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ABSTRACT

One long-term goal of physics-based sound synthesis and
audio effect modeling has been to open the door to models
without a counterpart in the real world. Less explored has
been the fine-grained adjustment of the constituent physi-
cal laws that underpin such models. In this paper, the in-
troduction of a nonlinear damping law into a plate rever-
beration model is explored, through the use of four differ-
ent functions, transferred from the setting of virtual-analog
electronics. First, a case study of an oscillator with nonlin-
ear damping is investigated. Results are compared against
linear dissipation, illustrating differing spectral character-
istics. To solve the systems, a recently proposed numerical
solver is employed, that entirely avoids the use of iterative
routines such as Newton-Raphson for solving nonlineari-
ties, thus allowing very efficient numerical solution. This
scheme is then used to simulate a plate reverbation unit,
and tests are run, to investigate spectral variations induced
by nonlinear damping. Finally, a musical case is presented
that includes frequency-dependent damping coefficients.

1. INTRODUCTION

In recent years, physical modelling-based techniques gained
importance in the field of sound synthesis [1], and different
methods were developed over time [2–4].

Despite allowing to synthesize natural and realistic sounds,
the main drawback of physical modelling synthesis lies
in the computational cost required by the simulation al-
gorithms, which is much larger with respect to other syn-
thesis techniques [1]. This is particularly true when deal-
ing with nonlinearities, which are of critical importance
in sound synthesis. In particular, virtual-analog models,
which emulate analog electroacoustical devices, often need
to include of nonlinear components such as diodes [5]. In
order to guarantee a passive energy balance of the discrete
numerical schemes, the simulation algorithms mostly rely
on fully-implicit methods [5, 6], which require the use of
iterative routines such as Newton-Raphson to be solved.
These methods are computationally expensive and serial in
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nature, requiring to iterate multiple times per time-step to
converge to a solution. Other issues emerge, such as a vari-
able computational cost per time-step, linked to the number
of iterations, and the necessity to choose appropriate toler-
ance thresholds and iterations caps. In addition, existence
and uniqueness of the computed solutions is generally not
ensured [7]. A numerical method was recently proposed
[8,9], which allows for the solution of ordinary differential
equations (ODEs) by employing a linearly-implicit time-
stepping procedure. This way, the system is updated by
simply solving one linear system, thus avoiding the use of
iterative routines. This method was successfully employed
for the simulation of virtual-analog [9] and acoustical sys-
tems [10].

One long-term goal of physical modelling sound synthe-
sis and virtual-analog modeling has been to open the door
to models without a counterpart in the real world. In par-
ticular, less explored has been the fine-grained adjustment
of the constituent physical laws that underpin such mod-
els. In this work, the introduction of nonlinear damping
into an electroacoustical unit, such as a plate reverb, is ex-
plored. In the context of virtual-analog, Bilbao et al. were
among the firsts to develop a physical model of a plate re-
verb, making use of FDTD techniques [11]. Later, Duc-
ceschi and Webb [12] employed a modal approach for de-
veloping a plugin simulating the EMT 140 plate reverb.
Commercial plug-ins based on physical modelling are also
available, see e.g. Physical Audio 1 and UVI 2 . In this
paper, the plate is simulated with the modal approach seen
in [12], while the damping functions employed are those
typically found in virtual-analog models, as they are natu-
rally expressed as energy dissipation functions inside cir-
cuits. Finally, the non iterative method [9] is employed as
a time-stepping scheme, to ensure efficiency.

The paper is structured as follows: Section 2 presents the
case study of a damped, forced oscillator. Here, the four
damping functions are illustrated, and a test compares the
nonlinear systems outputs with the response of a linearly
damped oscillator. In section 3 a plate model is devel-
oped, and a test investigates the differences introduced by
nonlinear damping. In section 4 the case of a plate with
frequency-dependent damping coefficients is presented, and
section 5 concludes the paper. Sound samples and higher-

1 physicalaudio.co.uk/products/dynamic-plate-reverb
2 www.uvi.net/plate.html
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resolution images are available on GitHub 3 .
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Figure 1: Damped mass-spring system with forcing. The
system frequency can be defined by means of the mass m
and the spring stiffness κ with the relation: ω0 =

√
κ/m.

2. CASE STUDY: SIMPLE HARMONIC
OSCILLATOR

It is convenient to start by considering a simple dynamical
system with a single degree of freedom (DOF): a mass-
spring system with an added nonlinear damping mecha-
nism, driven by an input signal. The system can be de-
scribed by the equation:

r̈ = −ω2
0r − σ0f(η) + g0 i, η = aṙ, (1)

which is a second-order ODE in time. Here, r = r(t) :
R+

0 → R represents the displacement of the mass, in me-
ters, from the equilibrium position, which depends on time
t ≥ 0; ω0 is the angular frequency of the oscillator in
rad/s, and is defined as: ω0 =

√
κ/m, where κ is the

spring stiffness, and m is the oscillator mass in Kg. The
function i = i(t) is a normalized, dimensionless forcing
signal, multiplied by an amplification factor g0 ∈ R+

0 , with
dimension N/Kg, and f(η) : R → R is a general nonlin-
ear function, depending on the oscillator velocity ṙ. The
damping is parameterized by two real constants σ0 > 0,
a > 0: the first sets the amount of damping of the system,
and has dimension of Kg−1, while the latter is a free, di-
mensionless parameter. In this paper, it is assumed that f
satisfies the following conditions:

η f(η) ≥ 0 (2a)
lim

|η|→0
f(η)/η < ∞ . (2b)

Property (2a) is referred to as sector-boundedness [9], here
to sector [0,∞], while condition (2b) enforces bounded-
ness of f/x at the origin. Both properties (2) are essential
for the non-iterative method described in [9].

2.1 Energy Balance

An energy balance for this system can be obtained by mul-
tiplying equation (1) by ṙ. One then gets [4]:

d

dt

(
ṙ2

2
+

ω2
0r

2

2

)
︸ ︷︷ ︸

H

= −ṙ σ0 f(η) + ṙ g0 i, (3)

3 github.com/Nemus-Project/plate-saturator

where H is the system energy, scaled by the mass, and the
input term has now dimension of a power, again divided by
a mass. Therefore:

Ḣ = −σ0 ηf(η)/a+ ṙ g0 i. (4)

Owing to condition (2a), and to the non negativity of σ0

and a one obtains, in the zero-input case:

Ḣ ≤ 0; (5)

which is the condition for passivity.

2.2 First-Order Form

The non-iterative method described in [9] applies to first-
order ODEs. Therefore, it is necessary to express equation
(1) in first-order form. To this end, one may define a gen-
eralized coordinate q and a momentum p such that:

q ≜ ω0r; p ≜ ṙ, (6)

with p being the momentum normalized by the mass. Thus,
the system energy takes the form:

H = p2/2 + q2/2. (7)

Equation (1) can then be re-written as:

ẋ = J∇H − cf(η) + ξi. (8)

Here:

x =

[
q
p

]
, J =

[
0 ω0

−ω0 0

]
, c =

[
0
σ0

]
, ξ =

[
0
g0

]
(9)

and
η = α⊺x, α⊺ =

[
0 a

]
. (10)

The gradient operator is ∇ = [∂/∂q, ∂/∂p]⊺, therefore:

∇H = x. (11)

An energy balance can be obtained by left-multiplying
equation (8) by (∇H)⊺:

(∇H)⊺ẋ = (∇H)⊺J∇H − (∇H)⊺(cf(η) + ξi). (12)

Because J is skew-symmetric, the first term on the right-
hand side vanishes, and, owing to the chain rule, Ḣ =
(∇H)⊺ẋ. Therefore, in the zero-input case:

Ḣ = −σ0 p f(η) = −σ0ηf(η)/a, (13)

which is the same result obtained in (4); thus, the system
dissipates. Notice that equation (8) has the form of a Port-
Hamiltonian system [13–15], including energy storage and
dissipation elements.

2.3 Finite Difference Operators

In the next subsections, the numerical method described
in [8, 9] will be employed to numerically integrate equa-
tion (8) in time. To this end, it is first necessary to define a
constant time-step k, yielding a sampling rate: fs = 1/k.

https://github.com/Nemus-Project/plate-saturator


A continuous function r(t) may be approximated by a dis-
crete time series rn at time instants tn = kn, where n ∈ N
is the time index.

With a time-grid defined, it is possible to write the basic
identity and shift operators:

1rn = rn, e+r
n = rn+1, e−r

n = rn−1. (14)

The latter are used to write the time-difference operators:

δ+ = (e+ − 1)/k, δ− = (1− e−)/k. (15)

These are the forward and backward operators respec-
tively. Finally, averaging operators can be written as:

µ+ = (e+ + 1)/2, µ− = (1 + e−)/2. (16)

2.4 Non-Iterative Numerical Scheme

It is now possible to adapt the solver proposed by Duc-
ceschi et al. [9] to numerically integrate equation (8) in
time, in a similar fashion to what seen in [10]. A numeri-
cal scheme is given as follows:{

σ(P )δ+x
n = J▽hn+1/2 − cdnµ+η

n + ξµ+i
n

ηn = α⊺xn,

(17)
where the discrete energy is:

h(qn, pn) ≜ hn = (pn)2/2 + (qn)2/2. (18)

In order to compute the gradient, consider the discrete par-
tial derivative of h with respect to q:

δq+h(q
n, pn) =

h(qn+1, pn)− h(qn, pn)

qn+1 − qn
= µ+q

n. (19)

An analogous result holds for p; therefore:

▽hn+1/2 ≜ [δq+h
n, δp+h

n]⊺ = µ+x
n. (20)

Notice that, because the forward average operator com-
putes the mean between two samples at time instants n and
n + 1, the discrete energy gradient in 20 is defined on an
interleaved time-grid.

In equation (17), σ(P ) = σ(P )(xn) is a factor taking
the form of a perturbation expansion, which can be set to
yield a truncation error with an accuracy of order (P + 1).
Following [9], its expression is:

σ(P )(xn) =

P∑
p=0

kpζ(p)(xn). (21)

The functions ζ(p)(xn) are obtained by means of technique
which has strong links to the modified equation method
[16]. The first two terms are here given explicitly as:

ζ(0)(xn) = I (22a)

ζ(1)(xn) = cα⊺(λn − dn)/2. (22b)

where

λn ≜ df/dη
∣∣
η=ηn , dn ≜ f/η

∣∣
η=ηn . (23)

Thus, with P = 1 one gets a factor:

σ(1)(xn) = I+ kcα⊺(λn − dn)/2, (24)

which allows the formulation of a second-order accurate
numerical scheme. A proof of this is obtained easily by
applying scheme (17) to the continuous function x(t),
assumed to solve the continuous equation (8). Taylor-
expanding around tn := kn, one obtains a truncation error
going as O(k2).

Expanding the operators in equation (17) yields the up-
date:

Anxn+1 = Bnxn + kξµ+i
n, (25)

with:

An = I+ k cα⊺λn/2− k J/2

Bn = I+ k cα⊺(λn − 2dn)/2 + k J/2.
(26)

Notice that both An and Bn only include values at time-
step n; therefore, the state at n+1 can be computed with a
single 2 × 2 matrix inversion, without relying on iterative
routines. Furthermore, the oscillator position in meters rn

can be retrieved at each time sample with: rn = qn/ω0.
Regarding passivity of scheme (17), a discrete version of

the energy balance (4) is not directly available; neverthe-
less, partial results on the stability properties of these kind
of solvers are available in [9].

2.5 Nonlinear Dissipation

The numerical scheme presented above holds for any func-
tion f(η), provided that it satisfies properties (2). Here,
four different expressions for nonlinear dissipation are
given, all borrowed from the virtual-analog world. These
are: the cubic nonlinearity, which is the first nonlinear
polynomial term satisfying properties (2); the hyperbolic
tangent, used as a soft-clipping mechanism, for instance in
the Moog ladder filter [17]; the hyperbolic sine, found into
diode clipper models [18]; and the exponential nonlinear-
ity, from the Shockley diode model. Table 1 reports the
expressions for f(η), along with the components for d and
λ.

Cubic Tanh Sinh Exp
f(η) η + η3 tanh(η) sinh(η) eη − 1
d(η) 1 + η2 tanh(η)/η sinh(η)/η (eη − 1)/η
λ(η) 1 + 3η2 sech2(η) cosh(η) eη

Table 1: Nonlinear dissipation functions f(η) and associ-
ated d and λ expressions.

Finally, it is convenient to define a scheme with a more
“classic” linear viscous friction. This system will be used
as a reference, and the solution will be compared against
the outputs of the nonlinear systems, in order to investigate
the differences introduced by nonlinear dissipation. One
sets fn = ηn; therefore, dn = λn = 1 and scheme (17)
reduces to:

δ+x
n = J▽hn+1/2 − cµ+η

n + ξµ+i
n, (27)

which is equivalent to the midpoint method [16] applied to
a damped simple harmonic oscillator.



Figure 2: Outputs of the five oscillators, driven with sine
sweeps, under two different values of gain g.

2.6 Numerical Experiments

Figure 2 displays the outputs of the five oscillators, driven
with a quadratic sine sweep, ranging from 200 to 500 Hz,
under two different values for the gain g. The sample rate
was fs = 2 · 44100 Hz; the oscillator angular frequency
was set to ω0 = 350 · 2 · π rad/s, falling into the input
signal frequency range, and the parameters σ0 and a were
1 and 20 respectively. Output samples were normalized
between [−1, 1], in order to better observe differences in
the spectral contents.

As expected, the linear system output does not depend on
input amplitude variations. On the other hand, the “cubic”,
“sinh” and “exp” nonlinearities produce an enrichment in
the frequency spectrum, as the gain increases. Notice that
the “sinh” and “cubic” systems only produce odd harmon-
ics: this makes sense, since the hyperbolic sine and the
cubic only include odd terms in their Taylor expansion.
The exponential expansion instead presents even and odd
terms; as a result, the “exp” spectrum includes even har-
monics as well. The “tanh” nonlinearity presents a com-
pletely different behaviour. The function itself is nearly
linear around the origin, and almost constant for greater
values of η, where it can be approximated by zero-order
polynomials of values −1 and 1. Therefore, there is no
creation of spectral content; furthermore, this produces a

Figure 3: Geometrical scheme of a thin rectangular plate.

constant, low damping for all frequencies, contrary to lin-
ear damping, where friction increases linearly with speed.

3. PLATE MODEL

A plate reverb can be described by a flat, rectangular plate,
as represented in Figure 3. In the hypothesis of small vibra-
tions, this system is described by the Kirchhoff equation,
here given with a forcing term, and no damping:

ρH
∂2u

∂t2
= T0∇2u−D∇4u+δ(x−xi)δ(y−yi)gi. (28)

Here, u = u(x, y, t) represents the transverse displace-
ment, ∇ is the gradient operator, and the plate occupies a
region D = [0, Lx]× [0, Ly]. Notice that model (28) holds
under the condition H ≪ Lx, Ly , where H is the plate
thickness. The other constants are: volumetric density ρ,
tension T0; D is the fexural rigidity, and is expressed as:
D = Eh3/[12(1− ν2)], where E is Young’s modulus and
ν is Poisson’s ratio. The function i = i(t) represents the
normalized, dimensionless driving signal, with gain g, co-
ordinates xi, yi indicate the input location on the plate and
the Dirac deltas specify point-wise forcing. Notice that, in
this case, g has dimension of a force.

In this work, a modal approach is employed to solve
equation (28), following Ducceschi and Webb [12]. To this
end, the solution u is expressed as a superposition of modal
displacements Φm(x, y) and time evolutions rm(t):

u =

M∑
m=1

Φmrm, (29)

where M is in theory infinite, but will be limited for prac-
tical purposes. The mode shapes (eigenfunctions) must
satisfy the boundary conditions. In this work, simply-



Figure 4: First four mode shapes of a rectangular plate with
simply supported boundary conditions, and associated in-
dices mx, my .

supported boundaries are considered, and one has [19]:

Φm(x, y) =

√
4

LxLy
sin

mxπx

Lx
sin

myπy

Ly
, (30)

where mx, my are a pair of integers that indicate the mode
number in the x and y directions. In this paper, borrow-
ing the notation from [12], these were merged into the
single index m for easiness of notation. The first four
mode shapes are depicted in Figure 4. Functions Φm

are orthonormal under the L2 inner product; therefore:
∥Φm∥D = 1. Substituting equation (29) into (28), left-
multiplying by (30) and taking an L2 inner product over D
yields the equations that describe the time evolution of the
modes:

r̈m + ω2
mrm = gmi, (31)

with gm := Φm(xi, yi)g/ρH . Here the ωm are the eigen-
frequencies of the system, which take the form:

ωm =

√
T0π2

ρH

(
m2

x

L2
x

+
m2

y

L2
y

)
+

Dπ4

ρH

(
m2

x

L2
x

+
m2

y

L2
y

)2

.

Finally, the displacement in meters can be retrieved at a
desired position (xo, yo) with:

u(xo, yo) =

M∑
m=1

Φm(xo, yo)rm. (32)

3.1 Including Dissipation

Equation (31) represents a system of uncoupled, un-
damped, forced oscillators. By including a dissipation
function, one obtains an expression analogous to equation
(1):

r̈m = −ω2
mrm − σmf(ηm) + gmi, (33)

where ηm = amṙm, and f is, as before, a generic function
that satisfies properties 2.

As in Section 2, it is convenient to express equation (33)
in first-order form, by defining: qm ≜ ωmrm, pm ≜ ṙm.
The energy for a single mode m then becomes:

Hm = p2m/2 + q2m/2 (34)

Therefore, equation (33) can then be re-written as:

ẋm = Jm∇mHm − cmf(ηm) + ξmi

ηm = α⊺
mxm.

(35)

Here, analogously to what seen in Section 2, the equation
components take the form:

xm =

[
qm
pm

]
, Jm =

[
0 ωm

−ωm 0

]
,

cm =

[
0
σm

]
,α =

[
0
am

]
, ξm =

[
0
gm

]
,

(36)

where σm and am are, respectively, the damping coeffi-
cient and free parameter for each mode. An energy bal-
ance is again obtained by left-multiplying equation (35) by
(∇H)⊺. With the same considerations drawn in Section 2,
in the zero-input case, one obtains a passive energy balance
Ḣm = −σmf(ηm)ηm/am that holds for each mode.

3.2 Plate Simulation

Notice that, in this paper, a scalar approach for modal
expansion was preferred to the matrix-based method em-
ployed in paper [10]. The reason for this is that the non-
iterative solver detailed in [9] requires the function f to be
a scalar. However, as seen in equation (33), each mode has
an associated damping component, thus making f a vec-
tor of M elements, in a matrix-form modal expansion. On
the other hand, the dissipation function is indeed a scalar
if each mode is considered separately; hence, it is possible
to apply the non-iterative solver to the ”unrolled” modal
expansion and solve each oscillator separately.

A second-order accurate, non-iterative numerical scheme
solving equation (33) reads:{
σ

(1)
m δ+x

n
m = Jm▽hn+1/2

m − cmdnmµ+η
n
m + ξmµ+i

n

ηnm = α⊺
mxn

m.

(37)
Here, the energy gradient is, again: hn+1/2

m = µ+x
n
m, and

σ
(1)
m (xn

m) is expressed as in equation (24), with the com-
ponents now depending on the mode number m. To solve
the system, it is possible to expand the operators, thus ob-
taining the update:

An
mxn+1

m = Bn
mxn

m + kξmµ+i
n, (38)

from which xn+1
m is obtained after inversion of the 2 × 2

matrix An
m. To simulate the full system, all the M oscilla-

tors must be updated in parallel, at each time step. Then,
the displacement at the output position can be retrieved
with the expression (32), remembering that rm = qm/ωm.



Figure 5: Outputs of the five plate models driven with sine
sweeps, under a gain g = 8000. The high value of g, nec-
essary for highlighting the differences in the systems re-
sponses, is responsible for the aliasing effects visible in
the last two figures.

3.3 Numerical Experiments

The four nonlinear dissipation functions detailed in table
1 were again employed in scheme (38), and results were
compared against linear damping, as previously done for
the mass. The five systems were driven with a quadratic
sine sweep, ranging from 200 to 5000 Hz, and run with
a sampling rate fs = 2 · 44100 Hz. Parameters a and
σ0 were set to 30 and 0.1 respectively, constant for all the
modes. Other constants were: T0 = 200 N, H = 0.5 mm,
Lx = 0.4 m, Ly = 0.6 m. The plate was considered to
be made of steel; therefore, the physical parameters were:
ρ = 7.872 · 103 Kg/m3, E = 2 · 1011 Pa and ν = 0.3;
these values yielded 2302 modes between 20 and 15000
Hz. Input and output positions were, respectively, (0.52 ·
Lx, 0.53 · Ly) and (0.47 · Lx, 0.62 · Ly).

A first test consisted in driving the systems with increas-
ing gain values: it was verified that, for low-amplitude in-
put signals, the five outputs presented no differences both
in time and frequency domain; whereas for high-gain in-
puts it was observed a deviation from the linear behaviour.
This result matches the one obtained for the mass, seen in
Figure 2. Figure 5 displays the outputs of the five sys-
tems under an input gain g = 8000. One clearly ob-
servable difference is the increased damping introduced
by the “cubic”, “sinh” and “exp” nonlinearities, which are
steeper than the others two: this results in higher dissi-
pation. Moreover, as in the one-DOF case, these func-
tions enrich the spectrum: only odd harmonics in the first
two cases, both even and odd harmonics in the last one.
The lower damping produced by the “tanh” nonlinearity
emerges, also in this case, from the higher energy content
present at the end of the spectrum.

4. A MUSICAL CASE: PHYSICAL DAMPING
VALUES

Up until now, constant values for the damping coefficients
σm were employed, in order to avoid biasing the testing;
in real plates though, the amount of loss depends on the
frequency. One of the advantages of the modal projec-
tion detailed in Section 4 is the possibility of setting a de-
cay parameter for each mode. Therefore, application of
refined loss profiles is immediate in this framework, un-
like in time-domain approaches, where the implementation
of frequency-dependent damping typically requires mixed
time-space derivatives [11]. Damping in a metallic plate
comes from two main sources: thermoelasticicy and ra-
diation in the free field [20]. In addition, the EMT 140
plate reverb includes a porous panel that is used to con-
trol the decay time. The presence of the porous material
modifies the impedance in the nearfield of the plate: thus,
if the distance between the two elements is reduced, radi-
ation increases. A complete model for damping is found
in [21], which is based on works from Arcas [20], Cum-
mings [22,23] and Craik [24]. Here, the damping formulae
developed in [21] were employed to retrieve a set of values
for some coefficients cm ≜ amσm, linking am and σm.
Then, a value for am was set, constant for all the modes,
and the σm were computed consequently. This way, in-
creasing am only affects the amount of nonlinearity intro-
duced into the system, leaving the decay rate unaffected.

Sound samples for this system are available on the
GitHub companion page.

5. CONCLUSION

This work explored the introduction of nonlinear damp-
ing into a plate reverb, by making use of four functions
typically employed in virtual-analog settings. It was seen
that the latter affect the linear output in different man-
ners; in particular, three of the four expressions enriched
the spectral content, with responses typical of saturators.
On the other hand, the Tanh nonlinearity seems to produce
an output which is of less interest in musical applications.
The plate was solved with a modal approach, and a recent



non-iterative numerical method was successfully applied
to simulate the system. Finally, a physical model for damp-
ing was developed, and included into the model, to test the
algorithm in a musical setting.

Future work will include code optimizations, and a code
porting in C++, for developing a full functioning vst plu-
gin.
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