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The dynamics of the local kinetic energy spectrum of an elastic plate vibrating in a wave turbulence
(WT) regime is investigated with a finite difference, energy-conserving scheme. The numerical method
allows the simulation of pointwise forcing together with realistic boundary conditions, a set-up which
is close to experimental conditions. In the absence of damping, the framework of non-stationary wave
turbulence is used. Numerical simulations show the presence of a front propagating to high frequencies,
leaving a steady spectrum in its wake. Self-similar dynamics of the spectra are found with and without
periodic external forcing. For the periodic forcing, the mean injected power is found to be constant, and the
frequency at the cascade front evolves linearly with time resulting in a increase of the total energy. For the
free turbulence, the energy contained in the cascade remains constant while the frequency front increases
as t1/3, These self-similar solutions are found to be in accordance with the kinetic equation derived
from the von Karman plate equations. The effect of the pointwise forcing is observable and introduces a
steeper slope at low frequencies, as compared to the unforced case. The presence of a realistic geometric
imperfection of the plate is found to have no effect on the global properties of the spectra dynamics. The
steeper slope brought by the external forcing is shown to be still observable in a more realistic case where
damping is added.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

in terms of dimensional analysis as for the Kolmogorov 41 theory
of hydrodynamics turbulence [4]. Using the assumption of weak

Wave Turbulence (WT) describes a system of waves interact-
ing nonlinearly away from thermodynamical equilibrium [1,2]. Al-
though the system under study is composed of waves only, the
term “turbulence” is used here in analogy with hydrodynamic tur-
bulence, where the energy of the system is transferred through
scales (referred to as a cascade) resulting in a large bandwidth en-
ergy spectrum. A particular property is that, for WT systems, the
form of the spectrum can be derived analytically [3] and not just
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nonlinearity, and an appropriate separation of timescales, a natural
closure arises leading to an analytical expression for the equation
for the second order moment (e.g. the kinetic energy spectrum). So-
lutions to this equation lead to two physically different scenarios:
the first one represents the system at equilibrium, where the total
energy of the system is equally spread among all the Fourier com-
ponents of the system (known as the modes), and thus correspond-
ing to a Rayleigh-Jeans type of spectrum. The second scenario is
out-of-equilibrium and leads to the Kolmogorov-Zakharov spec-
trum that describes a flux of energy from the injection scale, where
energy is input in the system, to the dissipation scale such as in
hydrodynamics turbulence. In the latter scenario the modes re-
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ceive and give energy to adjacent modes, thus creating a cas-
cade of energy through scales. WT formalism has been applied
to many systems in a variety of contexts, ranging from quantum-
mechanical to astrophysical systems, and includes many systems
encountered in the ordinary world. An exhaustive list may be
found in [1]; here some examples are recalled: capillary [5,6]
and surface gravity waves [7-9], Alfvén waves [10,11], and Kelvin
waves [12,13].

Flexural waves produced by large amplitude vibrations of
elastic plates have been studied within the framework of the
wave turbulence theory [14] applied to the von Karman equa-
tion [15,16] for the transverse displacement w. The analytical Kol-
mogorov-Zakharov spectrum is then given by

Ch 13100173 (6

P,(f) = mgc/ log"/ (7) : (1)
where ¢ is the constant flux of energy transferred through scales,
P, refers to the power spectrum of the transverse velocity v = w,
h is the thickness of the plate, v Poisson’s ratio of the material, and
C a constant. Because the theory is fully inertial, f is the frequency
at which energy is removed from the system. In experiments, this
is ensured by the damping of the plate. At first order the
spectrum is flat, but with a log-correction in the inertial range of
frequencies. The WT theoretical result has been compared to ex-
periments [17,18], showing discrepancies regarding the shape and
scaling of the spectrum with the energy flux. Thus, recent work has
focused on the investigation of the possible causes for such discrep-
ancies. Experimentally, the wave-structure and dispersion relation
was checked in [18], leading to the conclusion that the nonlinear
vibrations of a plate are indeed due to a set of waves following the
theoretical (linear) dispersion relation. The correct separation of
timescales, necessary assumption for the WT theory, was verified
in[19]. Afirst discrepancy effect was observed in [20], showing that
the local forcing of the shaker is responsible for a steeper slope in
the supposed inertial range of the energy spectra. More recently,
damping has also been shown to be the cause for a steeper slope of
the spectrum, indicating that the inertial range might not exist for
thin plates used in experiments, rendering then meaningless any
comparison with the WT theory [21]. From the numerical stand-
point, it is worth mentioning that all the numerical methods used
so far are spectral schemes [14,22,21,23-25]. Hence the forcing is
in the Fourier space, a feature that is different from a pointwise ex-
citation used in experimental conditions. All available numerical
results recover the KZ spectrum of Eq. (1) when the damping is lo-
calized at high frequency only. However, when realistic damping is
added, see e.g. [21,23], the same conclusions as for the experiment
are met.

Other sources of discrepancies have not been addressed yet,
such as the finite size effects or the possibility of three wave in-
teractions (quadratic nonlinearities) in real plates. Because of the
w — —w symmetry of the von Karman equation, these non-
linearities are not taken into account in [14]. Indeed, geometrical
imperfections are unavoidable in real plates, and they are known
to break this symmetry and to produce quadratic nonlinearities
[26,27]. In particular, it has been shown in [28,29] that imperfec-
tions play an important role in the transition scenario to turbulence
and favor instabilities and the appearance of quasiperiodic vibra-
tions.

The numerical method used in this work relies on a finite differ-
ence, time domain, energy-conserving scheme [30,29]. The main
advantages are that: (i) the time-stepping integration method con-
serves energy up to machine accuracy, so that essential properties
of the underlying continuous Hamiltonian systems are preserved
by the discretization [31]; (ii) the external forcing is pointwise in
space just as in the real experiments; (iii) realistic boundary con-
ditions can be implemented instead of using periodic boundary

conditions as considered by previous numerical investigations us-
ing spectral methods [14,22,25].

The aim of this article is to investigate numerically wave turbu-
lence produced by the von Karman plate equations. With a numer-
ical scheme close to experimental conditions, unavoidable effects
in real experiments such as pointwise forcing and geometric im-
perfections can be accounted for. In order to properly distinguish
the different effects, most of the presented results are obtained in
the absence of damping, where the framework of non-stationary
wave turbulence should be used [32,33]. The theory predicts self-
similar dynamics of the spectra with a front propagating to higher
frequencies. Such propagation has been observed for surface grav-
ity waves in experiments [34]. On the contrary, capillary turbu-
lence [35,36] exhibits a decay that begins from the high frequency
end of the spectral range. The discrepancy with the self-similar the-
ory of wave turbulence is ascribed to the presence of finite damping
at all frequencies of the wave system [35,37].

The article is organized as follows: the governing equations
together with the numerical approach are described in Section 2.
Section 3 presents the data analysis tools used to study the spectral
dynamics. The main results are given in Section 4. Periodically
forced turbulence for a perfect plate is first considered. A self-
similar propagation of a steep front towards the high frequencies,
leaving in its wake a steady spectrum, is observed. The frequency
of the front is found to evolve linearly with time. The presence
of realistic geometric imperfections is then taken into account
and shown to have no influence on the spectral dynamics. In
Section 4.2, the case of a free, undamped turbulence is exhibited.
In that case, self-similar dynamics of the spectra are also observed,
but now the front evolves with time as t'/3. Self-similar solutions
derived from the kinetic equation are found to display the same
dependences, thus validating the numerical results that give in
addition the shape of the self-similar function. The pointwise
forcing is found to influence the shape of the universal spectrum
left in the wake of the front, with a steeper slope for the forced
case. Finally, the effect of the pointwise forcing, underlined in the
undamped cases, is confirmed in Section 4.3, where a decaying
turbulence with a simple frequency-independent damping law is
addressed. Discussion and concluding remarks appear in Section 5.

2. Dynamical equations

2.1. Continuous time and space equations

The system under study is a rectangular elastic plate of thick-
ness h, dimensions L, L,, volume density p, Poisson’s ratio v and

Young’s modulus E. Its flexural rigidity is defined as D = 12(51“_3‘)2).

The dynamics of weakly nonlinear waves for the transverse dis-
placement w(X, t) can be described by the von Karman equa-
tions [15,16]. The general case of an imperfect plate is here
considered. If wo(Xx) denotes the initial (static) imperfection, then
the equations of motion read [26,38,27]

DAAw + pho = L(w + wg, F) + F (X, t) — R(w, t), (2a)

Eh
AAF = —EL(w + 2wy, w), (2b)

where A is the Laplacian operator, Aa(X) = ax + a,yy, and L(-, -)
is the bilinear symmetric von Karman operator, L(a(x), b(x)) =
b yy+ayy b s —2a,y b . F(X, t) is an auxiliary function called
the Airy stress function which encapsulates the behavior of the
plate in the in-plane direction, R(x, t) is a loss factor of some kind
which will be specified shortly and F (x, t) is the external excita-
tion load. In this work, the material parameters are chosen to cor-
respond to a steel plate; thus E = 2 x 10! Pa, p = 7860 kg/m>,
v = 0.3. The other geometrical and physical parameters will be
reported case by case.
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The dynamics of the plate is not complete until the boundary
conditions are not selected. Physical boundary conditions can be
derived by conducting an energy analysis based on the Lagrangian
of the system [16,39,40]. For this work, the particular case of a
transversely simply supported plate with movable in-plane edges
is considered. In turn, the following conditions hold along the
boundary 9S

w=wm,=0 Vxeas, (3a)
F=F,=0 Vxeads, (3b)

where n is the direction normal to the boundary. This is an im-
portant difference with respect to previously presented numerical
simulations, where periodic boundary conditions were employed.

The term R(x, t) represents losses. An artificial damping law
may be used,

R(w, t) = 200w, (4)

that dissipates energy at equal rates at all scales. In the context
of time-domain simulations of damped plates, the problem of an
accurate representation of the damping law with an ad-hoc time
operator is complex and has led numerous authors to various
laws, the implementation of which still remains a numerical
challenge; see e.g. [41]. Here the simplest time-domain operator
has been chosen allowing us to explore numerically its effect on
the dynamics of the cascade. The reader should however keep in
mind that it is ad-hoc and does not correspond to a real case.
The forcing is pointwise and of the form:

F (X, t) = §(X — X£)A(t) sin(2rfyt). (5)

The injection point has been chosen at Xz = (0.42Ly, 0.57L,) for
all the simulations. The forcing frequency f, is selected to be close
to the fourth eigenfrequency of the system, in order to activate the
cascade more easily [29]. A(t) is chosen to be:

Aot/fo for0 <t <tp;
A(t) = Ay fortp <t <ty; (6)
0 fort > tg.

In the above definition, t; corresponds to the ramp time: the
forcing ramps linearly from zero up to Ag in tp, seconds. Then,
the forcing remains constant at Ag for t; — tp seconds, where t;
corresponds to the total length of the simulation in the case of
periodic forcing.

The injected power is defined in this work as

ety =F X, t) wXp, t)/pS. (7)

After division by the factor pS, where S = L,L, is the area of the
plate, the injected power has the dimension of a velocity cubed.

2.2. Finite difference time domain scheme

In this section the numerical solution to system (2) together
with boundary conditions (3) is presented. Although numerical
simulations of von Karman plates in the context of WT have been
successfully developed in previous studies [14,22,25,23,24], here
a time domain simulation in physical space is presented. Time
and space are discretized so that the continuous variables (x, y, t)
are approximated by their discrete counterparts (I6x, mdy, nét),
where (I, m, n) are integer indices and (§x, 8y, §t) are the steps.
Boundedness of the domain implies that (I, m) € [0, N] x [0, N,]
so that the grid size is given by (N + 1) x (Ny + 1). The continuous
variables w(x, t), F(x, t) are then approximated by wy',,, F",, at the
discrete time n for the grid point (I, m). Time shifting operators are
introduced as

n+1

-1
ILm > ef—wlr,lm =w, - (8)

no__
Crt W)y = W Lm

Time derivatives can then be approximated by

1
0. = —(ery —€r),

1
= 8 = — (e —] s
th t+ h[( t+ )

1

8- = F(] —ery), St = 8ey 8. (9)
t

Time averaging operators are introduced as

1 1
Ky = 5(€t+ +1), M- = 5(1 +e-),

1
Mt = 5(et+ +e), Kt = Pt he—. (10)

Similar definitions hold for the space operators. Hence, the
Laplacian A and the double Laplacian A A are given by

8A:8xx+8y, 8AA:8A5A- (11)

The von Karman operator at interior points L(w, F) can then be
discretized as

I(w, F) = 8xxwdyyF + 8yywéiF
= 2fhx— by— Oxty+ Wxty+F). (12)
Thus the discrete counterpart of (2) is

DSsaw + phdpw = l(w + wo, i F) + Py — R s (13a)
Eh

e—DEsnF = —El(erf(w + 2wyg), w). (13b)

The damping terms are

ro(l, m, n) = 2008, wy',; ri(l, m,n) = =2018,w; . (14)

When o9 = 0, the scheme is energy conserving, where the
discrete energy is positive definite and yields a stability condition,
as proved in [30,42]. Implementation of boundary conditions is
explained thoroughly in [42].

3. Data analysis

The work is focused on the turbulent response at one point of
the plate chosen as (0.3L,, 0.2L,). The kinetic energy spectrum is
given by the velocity power spectrum which is calculated starting
from a velocity discrete-time series. For the remainder of the paper,
the symbol v, will identify the discrete velocity at the output point,
at the time t = ndt. Spectra analyses are performed on time
windows of duration 7. The discrete-time velocity power spectrum
is then defined as:

N 2

Z Une—lzﬂfn

n=1

2
py(f) = O

(15)

where N = t/4t is the total number of samples within the time
window. For the typical case of a thickness h = 1 mm and surface
0.4 x 0.6 m?, the sampling frequency is chosen as 1/8t = 400 kHz
and a time window of t = 0.05 s is selected for the analysis of
the spectra. In order to obtain a better convergence of the shape of
the spectra, a mean is taken over M = 3 consecutive spectra; in
other words, the symbol (P, (f)) will identify the mean take over 3
spectra covering a total time window T = Mt. When the thickness
of the plate changes, time window and sampling frequency change
accordingly. So, for instance, for a thickness h = 0.1 mm, the time
window is multiplied by a factor of 10, ¢ = 0.5 s and the sampling
frequency is divided by a factor of 10, 1/6t = 40 kHz. The number
M remains instead fixed. In the following, the brackets (- - -) will
denote an averaging on T which will generally depends on the
time.
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Fig. 1. (a) Displacement field in the turbulent regime for an undamped, perfectly flat plate of thickness h = 0.1 mm and dimensions L, x L, = 0.4 x 0.6 m%.
(b) Corresponding velocity field.
Table1 Simulations are also conducted by varying the dimensions S
Case studies. and the thickness h of the plate for different forcing amplitudes Ay
Ao (N) h(mm)  f, (Hz) S Grid points and frequencies f,. The first part is devoted to periodically forced
Case 1 10 1 75 04x06 102 x 153 turbulence and the second to free turbulence (or decaying, when
Case 2 20 1 75 04x06 102 x 153 damping is added) after the forcing is stopped.
Case 3 30 1 75 0.4x06 102 x 153
Case 4 45 1 75 0.4x06 102 x 153 o
Case 5 70 1 75 04x06 102 x 153 4.1. Periodically forced undamped turbulence
Case 6 25 0.5 37.5 0.4x06 102 x 153
Case7 5 0.5 37.5 0.4x06 102 x 153
Case 8 0.75 0.4 30 04x06 102 x 153 4.1.1. Perfect, undamped plates
Case 9 15 0.4 30 04x06 102 x 153 Typical numerically obtained displacement and velocity fields
Case10 0.1 0.2 15 04x06 102 x153 are shown in Fig. 1 for illustration. The displacement field presents
Case 11 0.02 0.1 7 0.4x06 144216 low frequency patterns; taking the velocity filters out these low
Case 12 0.005 0.1 75 04x06 102 x 153 quency patterns; g y ) ¢
Case 13 1 05 20 1x2 114 x 227 frequencies resulting in a much more homogeneous field, meaning
Case 14 175 0.5 20 1x2 114 x 227 that velocity measurements at one point are relevant for the
Case 15 2.5 0.5 20 1x2 114 x 227

The analysis for the injected power follows the same averaging
rules. The injected power discrete time series is denoted by &,
from which the mean (g) and the variance (s?) are calculated. The
temporal average ¢ is defined as the mean over the total data.

A characteristic frequency f. for the velocity power spectrum is
here introduced as

S (Pu(D) fdf
S P df

with P,(f;) also defining a characteristic spectral amplitude.
Note that f. should not be confused with the theoretical cut-off
frequency f defined in Eq. (1). The characteristic frequency f. will
be used in the next section in order to quantify the self-similar
dynamics of the spectra in the non-stationary cases.

fo= (16)

4. Numerical results

This section presents the results obtained for the following
cases:

(i) R(w, t) = 0, wo(x) = 0 (perfectly flat, undamped plate);

(ii) R(w, t) = 0, wo(x) # 0 (imperfect, undamped plate);
(iii) R(w, t) # 0, wo(x) = 0 (perfectly flat, damped plate).

turbulent property of the whole plate as already mentioned
in experiments having similar forcing schemes [17-19]. The
anisotropy effects due to the local forcing have been evidenced and
characterized experimentally by Miquel and Mordant [19].

A case study is first examined to serve as a master example of
the type of analysis that has been conducted on all the simulations.
It corresponds to case 1in Table 1 considering a plate of thickness
h = 1 mm, forced at f, = 75 Hz with a forcing of amplitude Ay =
10 N and a ramp time ty = 0.5 s (see Eq. (6), where t; is the whole
duration of the simulation). The surface is Ly x L, = 0.4 x 0.6 m?
and the grid size is 102 x 153 points, corresponding to a sampling
rate of 400 kHz for the time integration.

Fig. 2(a) shows the spectrogram (evolution of the frequency
spectra with respect to time) of the velocity at the measurement
point. It reveals the activated frequencies of the turbulent cascade
as a function of time. The energy keeps flowing into the system,
creating a never ending cascade where modes of higher frequency
receive energy from the adjacent lower frequency modes. Fig. 2(b)
shows the velocity power spectra at different stages of the
dynamics. It is evident that for these simulations no stationary
state exists: the spectra tend to occupy larger portions of the
available frequency range as time goes by. It should be pointed
out that the cascade front will develop up to half the sampling
frequency of the computation (200 kHz in this case): when the
cascade hits this limit, an artificial boundary reflects the energy
back into the box, towards smaller frequencies. This is a peculiar,
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Fig. 2. (a) Spectrogram of the velocity for the perfect undamped plate of thickness h = 1 mm, forcing from 0 to 10 N in 0.5 s (case 1 from Table 1), and then kept constant.

(b) Corresponding velocity power spectra computed every 2.5 s from 5 to 25 s.

unwanted numerical phenomenon that is not taken into account
in the analysis. The simulation is stopped before the boundary
reflection happens; in this way, the cascade can be regarded as
developing within an infinite frequency domain. Fig. 3(a) shows
that the evolution of the characteristic frequency f (t) is linear, f; =
¢ - t. The cascade front in Fig. 2 then develops to larger frequencies
with a constant cascade velocity ¢;. The spectral amplitude at the
characteristic frequency (P,(f;)) in Fig. 3(b) is seen to be fairly
constant over time. The power velocity spectra, rescaled using both
the characteristic frequency f. and amplitude P, (f;), are displayed
in Fig. 4. They all satisfactorily superimpose, indicating that the
dynamics of the energy spectrum is self-similar. This allows us to
write for the spectra

(Py(f)) = (Py(fo)) ¢p (f> , (17)

fe
where their shapes are given by the unique function ¢p (f /f.) (the
subscript p stands for periodically forced turbulence).

The injected power during the self-similar dynamics is shown
in Fig. 5(a): the fluctuations increase with time while the average
stays constant. More precisely, Fig. 5(b) shows that (¢2) = Dt,
and (¢) = &. Hence, the self-similar dynamics originate with the

4 —4
a -10 ‘ -10 ‘
L - |
N
E ]
2 0.5
0 \ \ \ L \ L]
5 10 15 20 25 5 10 15 20 25
t [s] t [s]
Fig. 3. (a) Time evolution of the characteristic frequency f., (b) corresponding

spectral amplitude of the spectra shown in Fig. 2(b) (case 1 in Table 1). The
characteristic frequency evolves as f, = ¢t with ¢ = 412.05 s72 and the mean
amplitude is (P, (f.)) = 1.11- 1074 m?/s? /Hz.

injection of a stationary energy flux characterized by €. Meanwhile,
the fluctuations of the injection flux grow following a diffusion-
type behavior characterized by the coefficient D.

The analysis described above is now applied to 15 different
cases, summarized in Table 1. For all cases, the self-similar
dynamics display a constant injected power &, a linear growth of
the variance of injected power <£2>, a linear increase of f. over time
and constant (P, (f;)) has been observed. It is worth noting that
the forcing values cover about four decades; this results in a large
range for the mean injected power &. The thickness values cover
one decade also. For each one of the cases, the cascade velocity ¢,
the spectral amplitude at the characteristic frequency (P, (f.)), the
diffusion coefficient D are calculated. These quantities are plotted
in Fig. 6 as functions of combinations of £ and h having the same
dimensions. It can be seen that for all cases a linear relationship
is found, confirming the consistency of the dimensional argument.
The constants of proportionalities are found from best linear fits:

(P, (fo)) = 2.51h(8)"/?, (18a)
)2/3
o= 0.20%, (18b)
\7/3
D =2.07- 104%. (18c)

In conclusion, the main result arising from the numerical
simulations of the periodically forced undamped plate is a self-
similar evolution of the power spectra. It is characterized by the
progression towards higher frequencies of a steep cascade front,
which leaves a steady self-similar spectrum in its wake. The self-
similar progression is found to be linear with time and has been
characterized by nondimensional numbers. The spectral amplitude
at f is found to have a dependence on (£)'/? (see Fig. 6) and the
self-similar spectrum can be expressed as

P,(f) = 0.42h(8)3 ®p (f£> , (19)

c
where ¢ is the mean injected power. In the absence of damping,
the mean injected power can be confounded with the energy flux
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Fig. 5. Time evolution of the injected power for the perfect undamped plate (case 1 in Table 1). (a) Time series, (b) (¢) and &,,s = 4/ (¢2). Continuous lines are best fits that

give £ = 9.65 - 107> m?/s?,and D = 1.6 - 107® m®/s’ (see the text).

transfer &, through scales. The progression of the cascade front

2
towards higher frequencies is given by f.(t) = ¢t o gh—;t
(from Eq. (18b)). The function @p displayed in Fig. 4 increases as
frequencies decrease towards the forcing frequency f,. A best-fit
approximation of the slope of @, indicates that it follows a power-
law for low frequencies with a small exponent close to —1/4; see
Fig. 4.

The self-similar solutions for the kinetic equation derived
from the von Karman plate equations are given in Appendix A.
Considering a self-similar solution for the wave spectrum n(k, t)
of the form:

n(k, t) =t "fi(ke™?) = t7Uf1(6), (20)
one finds for the power frequency spectrum P, (w, t):

w 1)
Py(@.0) ~ fi (ﬁ) =a (7). (21)

This relationship clearly evidenced that the frequency of the front
must evolve linearly with time, which is retrieved by the numerical
simulation. The function g; can be identified with the function @p
found numerically.

Let us now compare the self-similar spectrum with the KZ
solution. As the theoretical cut-off frequency f* cannot be related
to a given physical quantity in our numerical framework, the KZ
spectrum is built from Eq. (1) by selecting f* = f. and f = 5f,and
reported in Fig. 4. As one is interested in the power-law behavior
in the low-frequency range, one can observe that selecting f* = f;
or f* = 5f; has little influence on the slope comparison. It appears
that even though the log-correction of the KZ spectrum cannot be

Table 2
Case studies for the imperfect plate.
Ao (N) h (mm) fp (Hz) Z (mm)

Case 1 7 0.5 85 1
Case 2 3 0.5 8.5 1
Case 3 0.02 0.1 10.5 0.5
Case 4 0.01 0.1 10.5 0.5
Case 5 0.03 0.1 13 1
Case 6 0.02 0.1 85 0.1
Case 7 0.02 0.1 13 1
Case 8 0.01 0.1 85 0.1
Case 9 100 1 127 10
Case 10 70 1 127 10
Case 11 90 1 103 5
Case 12 60 1 103 5

discarded, the slope of the self-similar numerical solution appears
to be a bit steeper.

The injected power fluctuation is found to increase as a
diffusive law during the self-similar dynamics. A comprehensive
interpretation of this behavior may be given by the model of
injected power proposed in [43,44] for this system. In this work,
the velocity w (X, t) at the forcing point is assumed to result from
a turbulent feedback v described by the velocity spectrum, and a
linear response of the deterministic forcing F (x, t), say:
WXg, t) =v+ LF, (22)
with £ a linear operator. The feedback turbulent velocity is
assumed to be statistically independent of the forcing. Thus, using
Eq.(22)and the periodic forcing in Eq. (5) with A(t) = Ay, the mean
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Fig.7. Plate of dimensions 0.4 x 0.6 m? with imperfection in the form of a raised
cosine. (a) 3D view, (b) and (c) x and y axes views.

of the squared injected power becomes:

A2
(Fi)?) = 2 (%) + ((LF)*F?), (23)
After a sufficiently long time, the stationary forcing term will be
negligible compared with the quadratic term that keeps increasing

with time as the cascade propagates. Using Parseval’s identity:

(W) = / Py (F)df (24)
0

and the expression of the self-similar time-dependent spectrum in
Eq. (19), Eq. (23) becomes:

i )
() ~ 20 oA (25)
then

et

which gives the expected diffusive behavior. Hence, the injected
power fluctuation is the consequence of a direct feedback of the
propagation of the kinetic energy spectrum during the self-similar
dynamics.

4.1.2. Imperfect, undamped plates

The effect of the presence of a plate imperfection on the
turbulent dynamics is now investigated. Results are presented
following the same procedure as for the perfect plate.

The static deformation wq(X) appearing in Eq. (2) is chosen in
the form of a raised cosine

wo(X) = g |:1 + cos (n\/(x —X’+ 0 —y0)2>:| , (27)

L

when (x — x9)> + (v — ¥0)> < I?, and zero otherwise. Here
Z is the static (vertical) deflection, L is the width and X, is the
center of the deformation. The plate area is 0.4 x 0.6 m? and the
width is here selected to be 0.2 m, and X, is the center of the
plate; see Fig. 7. Z is then a free parameter that changes case by
case. This form of imperfection has been selected as it is close
to what can be observed in experiments, where large plates are
generally affected by a pattern of large wavelength. Our goal is thus
to quantify the effect of a selected realistic geometric imperfection
in order to assess its potential effect on the turbulence spectra.
For the perfect plate with wo(X) = 0, the internal restoring
force is symmetric so that only cubic nonlinearities are present
in the von Karman equations. However when an imperfection is
considered, quadratic nonlinearity appears in the model equations
and so three-wave processes are present in the dynamics.

A case study (case 11inTable 2)is first examined. It corresponds
to a plate with a thickness h = 1 mm, and a deformationZ = 5 mm
as defined in Eq. (27). As the eigenfrequencies increase with the
imperfection (see e.g. [29,27]), the excitation frequency is now
shifted so as to remain in the vicinity of the fourth eigenfrequency,
so that now f, = 103 Hz, and the forcing amplitude is selected as
Ao =90 N.

During the dynamics, it is observed that the velocity power
spectra evolve almost identically to the case of the perfect plate,
so that the spectrogram and power spectra of the imperfect plate
are similar to those shown in Fig. 2. The characteristic frequency
increases linearly with time while the characteristic amplitude
remains fairly constant as shown in Fig. 8. The normalized spectra
in Fig. 9 are superimposed according to a curve ¢p(f/f;) =
(P,(f))/{P,(f.)) indicating self-similar dynamics. The self-similar
dynamics is also produced during a mean constant injection flux
with diffusive-type fluctuations, as seen in Fig. 10.

A total of 12 simulations are considered for imperfect plates.
The parameters are listed in Table 2. Note that the magnitude of
the imperfection considered is large (Z > h), and of the order
of what can be expected in real experiments. In particular, it has
been shown in [45,27,46] that an imperfection of the order of the
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of the KZ spectrum, see Eq. (1), with f* = f.. Dashed red line shows a power lawf’%
to the web version of this article.)

thickness h is able to change the type of nonlinearity of the low
frequency modes. For each one of the cases, the cascade velocity
¢, the spectral amplitude at the characteristic frequency P, (f) and
the coefficient D are plotted as functions of combinations of £ and
h. It can be seen that for all cases a linear relationship is found
(Fig. 11):

(P,(f.)) = 2.30hz"/3 (28a)
52/3
57/3
D=1.86- 1047. (28¢)

The scaling laws are identical to the perfect case, although
the data are a bit more scattered in Fig. 11 than in Fig. 6.

e[m?/s%]

t [s]

. (For interpretation of the references to color in this figure legend, the reader is referred

The obtained values for the proportional constants are also very
close. The quadratic nonlinearity introduced by an imperfection is
then hardly discernable in the turbulent cascade dynamics which
indicates that the vibration amplitudes are sufficiently important
so that the cubic term dominates the quadratic one; hence only
the cubic nonlinearity seems to drive the main characteristics.
In conclusion, the geometric imperfection retained in this study,
and which has been selected as it provides insight into realistic
imperfections one may encounter in experimental situations, has
no effect on the main characteristics of the turbulent spectra.
Hence it appears that plate imperfections should not be considered
as a potential cause for explaining the discrepancies observed
between theory derived for perfect plates and real experiments
with unavoidable imperfections.
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Fig. 10. Time evolution of the injected power for the imperfect undamped plate (case 11 in Table 2). (a) Time series, (b) (¢) and &5 = +/(¢2). Continuous lines are best fits:

£ =1.15-10">m?/s?,and D = 0.0015 m®/s’ (see the text).
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(b) cascade velocity ¢; and (c) coefficient D.

In the remainder of the paper, the plate imperfections are no
longer considered. The next section is devoted to the study of
free (unforced) turbulence in order to highlight the effect of the
pointwise forcing.

4.2. Free undamped turbulence

We now consider the case where the perfect, undamped plate,
given an initial turbulent spectrum energy, is left free to vibrate
in the absence of forcing and develops a cascade. The plate
dimensions are L, x L, = 0.4x 0.6 m?, and the thickness is selected
as h = 0.1 mm. The sampling rate is chosen as 40 kHz resulting in
a grid size of 102 x 153 points. The excitation frequency is in the
vicinity of the fourth eigenmode at 7.5 Hz. The forcing amplitude
reaches Ap = 0.1 N linearly after a duration t; = 0.1 s and is
then abruptly stopped. The response of the system is shown over
a long time duration in the spectrogram of Fig. 12(a). Even after
stopping the external excitation, the number of excited modes
keeps increasing slowly. Because of the slowness of this dynamics,
the data analysis has been exceptionally changed with respect
to the standard procedure explained in Section 3. Here the time
window is T = 0.1 s and the number of spectra over which the
average is taken is M = 100, resulting in a time T = Mt = 10s.

The velocity power spectra of the free decaying turbulence are
shown at different stages of the dynamics in Fig. 12(b). The shape
of the spectra changes abruptly just after the forcing is stopped.
There is an evidence of a flattening in the low-frequency part of

a .10%
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Fig. 12. (a) Spectrogram of the velocity of the perfect, undamped plate for which
the forcing is stopped after 0.1 s. The plate is of thickness h = 0.1 mm and the
sampling rate 40 kHz. (b) Corresponding velocity power spectra averaged over 10's,
displayed for time intervals of 30 s. The first one (red) is computed from 0.1s (i.e. the
end of the forcing) to 10.1 s. Straight red line corresponds to the power law f~1/4,
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

the spectra, indicating once again the effect of the external forcing
has on the power-law slope. On the other hand, the cascade front
still progresses towards high frequencies even without forcing.
The corresponding characteristic frequency evolution is shown in
Fig. 13(a) and follows a clear 1/3 power law, significantly different
from the linear dependence found for the case with external
forcing. The energy conservation during the dynamics justifies the
—1/3 power law best fit for the spectra amplitude in Fig. 13(b).
More precisely, the characteristic frequency is found to behave as

f. = at'3 with a = 331.5 s~ 3, whereas the spectral amplitude

reads P,(f,) = bt™> withb = 1.1- 1077 m? s~3. In order
to express these dependences with nondimensional numbers, one
can introduce the conserved quantities of the system, i.e. the total
energy & = g f P,(f)df of the turbulent fluctuations - once
the forcing stopped the system is conservative — and the plate
thickness h. The energy £ may locally fluctuate since it is actually
the energy of the whole plate that is conserved. However, for
the point considered, it is found to keep reasonably constant at
£ &~ 2. 1078 m3/s? during the self-similar dynamics, as shown in
Fig. 14. Using the relationships derived from the best fits obtained
in Fig. 13 together with a dimensional analysis, one can reexpress
the dependences as

2
folt) = 0.45%t% P,(f,) = 0.41hE 373 (29)
The two constants now appearing in Eq. (29) should be universal,
as are the nondimensional numbers derived from the analyses in
previous sections.

The normalized spectra using both the characteristic frequency
and corresponding spectra amplitude are shown in Fig. 15 for times
larger than 10 s (i.e. after the low frequency spectra flattening).
They all superimpose showing that the dynamics becomes self-

similar with a spectrum universal shape @ such that P,(f) =

Pv (fc)(pF (;%)

The progression of the cascade front towards higher frequencies
must be accomplished by the presence of an energy flux &.. It can
be estimated from the energy d&. of the activated modes between
fc and f. + df; as the cascade propagates during the time interval
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%va(f)df for the free

dfc

déc
dt, . = be — th(fc dt

) Codt, T2
estimation gives:

. Using both evolutions in Eq. (29), the

g = 0.03&t7 L. (30)
The spectrum in the self-similar dynamics of free turbulence can
thus be expressed as:

P,(f) = 13.34he} s (%) . (31)

c

As for the first case with periodic forcing, the dependence of
the frequency front in t'/3 can be derived from the theoretical
kinetic equation governing the dynamics of the wave spectrum
for vibrating plates. Following the calculations presented in
Appendix A, and considering now that, for the self-similar solution
of the form given by Eq. (20), the total energy of the system is
conserved, one finds that the power frequency spectrum should

fulfill the relationship:

~ 13 i I Ve
Py(@. 1) ~ t fz( tm)—t & (55)-

This theoretical results clearly exhibits the fact that the frequency
front should evolve as t'/3 while the total energy as t~'/3. In
this case of free turbulence, the function g, can now be directly
identified from the numerical solution @&f.

Let us now compare the self-similar solution with the theoreti-
cal KZ spectrum for vibrating plates. Because of the spectral flatten-
ing highlighted in Fig. 12(b), one can observe that the function &
is now very close to the log-correction of the theoretical KZ spec-
trum for vibrating plates, as displayed in Fig. 15, and shown here
for f¥ = f.. The similarity between the self-similar spectrum of
decaying turbulence with the stationary KZ spectrum has already
been mentioned for surface gravity waves [34] and capillary waves
[35,37,36]. The comparison between the self-similar spectra of pe-
riodically forced turbulence (Fig. 4) and free turbulence (Fig. 15)
shows a steeper slope when forcing is present. This result should
be retrieved in a more realistic case where damping is also con-
sidered and should corroborate the experimental results shown
in [20]. The aim of the last section is thus to verify this numerically
in the case of a decaying turbulence.

(32)

4.3. Damped turbulence

The effect of the forcing is now studied in a damped case. The
plate dimensions are L, x L, = 0.4 x 0.6 m?, the grid size is
102 x 153 and h = 1 mm. The damping introduced in Eq. (4) is
selected as g = 0.5 s~ 1. The forcing frequency is f, = 75 Hz, with
a forcing amplitude of Ag = 140 N and a ramp time ty = 0.5 s. The
forcing remains periodic from 0.5 to 3.5 s (t; = 4 s in Eq. (6)) and
then abruptly stopped att = 4s.
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Fig. 15. Free undamped turbulence. Normalized velocity power spectra of Fig. 12(b) for t > 10 s during the self-similar dynamics. Black line shows the log correction

log!/3 (%) of the KZ spectrum, Eq. (1), with f* = f.
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Fig. 17. Time evolution of the injected power, (¢) and &,;; = +/{¢2) for the
decaying turbulence experiment shown in Fig. 16.

The response of the damped system is shown over 20 s of
duration in the spectrogram in Fig. 16(a). The spectra reach a
nearly steady state just before t = 4 s that corresponds to the
time at which the forcing is stopped. Meanwhile, the injected
power remains fairly constant in Fig. 17, (¢) (t) ~ &, and the
characteristic frequency grows, just as for the undamped case
studied in Section 4.1. The main difference is that the characteristic
frequency (Fig. 18) will saturate to a constant value once the
statistical steady state of turbulent energy will be reached. In other
words, the cascade velocity front decreases towards zero when
approaching the steady state.

As the cascade progresses to higher frequencies, more and more
modes are activated, which results in an increase of the dissipation
flux &4 since each mode has a linear energy loss parameterized
by op that should be compensated by the incoming flux. Hence,
less and less energy flux &, is available to propagate the cascade
front velocity, since (g.) (t) = & — (gq) (t). Once the forcing is
stopped at t = 4 s, the characteristic frequency overshoots as
shown in Fig. 18 and then sharply saturates. The drastic increase
of the characteristic frequency is provoked by the flattening of the
spectral shape at low frequencies as observed in Fig. 16(b).

The effect of the pointwise forcing evidenced in previous
sections is here retrieved for the damped dynamics. The numerical

experiment shown here shares similarities with the experimental
result of [20], where the spectral flattening was also observed in
the decaying turbulence regime. Once the forcing stopped, the
spectrum simply decreases exponentially as e~2%0¢ as expected
by a pure damping linear dynamics; see Fig. 18(b). Actually one
can observe that the nonlinear dynamics are still present but very
weak since the nonlinear propagation depends on the vanishing
turbulent energy £(t). Note that selecting other damping laws
should lead to different behaviors in the decaying regime, resulting
from the competition between the nonlinear propagation effect
with the energy losses, both of which having different frequency-
dependences associated to different timescales. Here the damping
law is frequency independent so that the results lend themselves
to an easy physical interpretation.

5. Discussion and concluding remarks

The nonlinear dynamics of turbulent vibrating plates has been
studied numerically with a finite-difference, energy-conserving
scheme including a pointwise forcing together with realistic
boundary conditions. The most important results have been ob-
tained in the absence of damping, in the framework of non-
stationary wave turbulence. Self-similar solutions for the energy
spectrum have been exhibited for a wide range of parameter vari-
ations. The simulations display the presence of a front propagat-
ing to high frequencies. With pointwise forcing, this propagation
is linear with time, whereas for free turbulence the dependence is
in t1/3. These self-similar behaviors can be directly retrieved from
the kinetic equation by analyzing the admissible self-similar solu-
tions. From the numerical solutions, one is thus able to get a nu-
merical value for the self-similar functions in non-stationary wave
turbulence for plates, for the two cases studied in this paper, with
and without external forcing. Comparing the shape of these nu-
merically obtained functions, one observes that they share simi-
larities with the theoretical KZ spectrum computed by [14], albeit
exhibiting interesting differences. In the case of a pointwise forc-
ing, a steeper slope is observed as compared to the free undamped
turbulence. Note also that the power 1/3 dependence on the en-
ergy flux is numerically retrieved.

This observation is robust to adding the damping in the
simulations and thus recovers experimental results shown in [20].
It can thus be concluded that the local pointwise forcing has a
measurable effect on the slope in the low-frequency range. This
effect has been related in [20] to an anisotropy induced by the
presence of the shaker. A direct extension of the results presented
herein should thus to compute spatial spectra in order to verify
numerically that the same argument holds.

For the first time, our numerical set-up allows for an investiga-
tion of the effect of a geometrical imperfection on the turbulent
dynamics. The results, obtained in a non-stationary framework,
clearly indicates that perfect and imperfect plates present identi-
cal characteristics in the WT regime. This emphasizes the fact that
in this regime the cubic nonlinear terms dominate the quadratic
ones, which thus have no measurable effect on the spectral char-
acteristics of the WT. Note however that this is not true for the
regimes of transition to turbulence that involve weaker excitation
amplitudes [28,29]. Note also that only a simple, low-frequency
pattern has been introduced as a geometric imperfection, in order
to present numerical results close to what can be expected in real-
life situations. The conclusions, based on numerical experiments,
are only valid for those cases. Extensions of the present work could
consider more complex geometric imperfections, with smaller
wavelengths, in order to continue the quantification of the tran-
sition between perfect and imperfect plates’ turbulent dynamics.

Finally, dimensional arguments have been used in order to
properly quantify the results in non-stationary cases. As no
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theoretical prediction for the non-stationary evolution of systems
with log-corrected spectra exist at the present time, we believe the
results shown here could be used so as to ascertain a theoretical
development that may predict the observations reported in this
contribution.
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Appendix. Self-similar solutions for non-stationary wave tur-
bulence in plates

This appendix is devoted to the derivation of self-similar
solutions from the kinetic equation describing the wave turbulence
in the von Kiarman plate equations. Following the theoretical
calculations reported by Diiring et al. [14], the 4-waves kinetic
equation has the general expression given by Zakharov et al. [2],
and reads

on(k, t) 1K) (A1)
=I1(k), .
ot
with n(k,t) = ng the wave spectrum and I(k) the collision

integral, the expression of which can be found in [14]:

I(k) = 1277/Uk123|2fl<1233(k+51k1 + 57Kk, + s3K3)

X S(a)k —+ S1w1 + Shwy + S36()3)dk]dk2dl(3, (AZ)

where Ji123 stands for the interaction term and fj o3 is such that

1 S1 S S3
fizs = Z Nk N, Nk, Ny <n— + — 4+ =+ .
k

51,852,853 nkl nkZ nk3

(A3)

Following [2], let us introduce a self-similar solution for the non-
stationary evolution, depending only on the wavevector modulus,
as

nk, t) =t If (kt™P) =t~ (n). (A4)

Plugging this ansatz in the kinetic equation (A.1), and taking into
account the expression of |Jiq23|% found in [14], one gets

—t~ " af ) + puf ()] = 1ot >4+, (A5)

so that a solution of the form (A.4) is possible only if the condition
—q — 1 = —3q + 2p is satisfied. It can be rewritten as

2(q—p) =1 (A6)

Let us introduce the total energy of the distribution

é:/a)nkdk

and consider the two cases numerically studied:

(A7)

Case 1: The plate is forced by a sinusoidal pointwise forcing of
constant amplitude and excitation frequency. In this case
the total energy increases linearly with time so that & ~ t.

Case 2: The plate is left free to vibrate, given an amount of energy
as the initial condition. In this case the total energy is
constant so that £ ~ 9.

Substituting (A.4) into (A.7) one obtains a second relationship
between p and g, which reads, depending on the case considered

1 forcase 1
p-—q= {0 for case 2. (A8)
Solving for (p, q) in both cases give
casel: p=1/2, q=1, (A.9)
case2: p=1/6, q=2/3. (A.10)
The last step consists in expressing the self-similar solution for
P,(w) the power spectrum of the transverse velocity v = w

used in the analysis, which is related to the power spectrum of
the displacement P, (w) by a proportionality relationship P, (w)
o w?P, (w). Using the space-frequency relationship P, (w)dw o
P, (k)kdk, together with the dispersion relation, one finds P, (w)
P, (k), such that P,(w) o k*P, (k). Finally, using the relationship
P, (k) o ”;k given in [14], one obtains finally P, (w, t) o k*n(k, t),
so that the self-similar solutions for P, (w, t) finally reads for the
general case with ni given by Eq. (A.4):

Py(w, t) ~ tP7If (02t 7P). (A11)

Specifying now the solutions for (p, q) found for the two cases
under study, one obtains for case 1:

Pu(w, t) ~ fi (ﬁ) =& (7). (A12)
and for case 2:
Py(w, t) ~ t7'3f, (,/%) =t"13g, (ﬂ%) (A.13)

where g7, (or fi ) have been indexed with respect to case 1 and
case 2, and are functions to be defined.
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