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a b s t r a c t

This paper presents a modal, time-domain scheme for the nonlinear vibrations of perfect
and imperfect plates. The scheme can take into account a large number of degrees-of-
freedom and is energy-conserving. The targeted application is the sound synthesis of
cymbals and gong-like musical instruments, which are known for displaying a strongly
nonlinear vibrating behaviour. This behaviour is typical of a wave turbulence regime, in
which the wide-band spectrum of excited modes is observable in the form of an energy
cascade. The modal method is selected for its versatility in handling complex damping
laws that can be implemented easily by selecting appropriate damping values in each one
of the modal equations. In the first part of the paper, the modal method is explained in its
generality, and it will be seen that the method is valid for plates with arbitrary geometry
and boundary conditions as long as the eigenmodes are known. Secondly, a time-
integration, energy-conserving scheme for perfect and imperfect plates is presented,
and implementation comments are given in order to treat efficiently the high-
dimensionality of the resulting dynamical system. The scheme is run with appropriate
parameters in order to produce sound samples. A simple impact law is considered for the
excitation, whereas the flexibility of the method is highlighted by showing simulations for
free-edge circular plates and simply-supported rectangular plates, together with various
damping laws.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Geometrically nonlinear vibrations of plates can exhibit a very rich and complex phenomenology when the vibration
amplitude is larger than the thickness [1–3]. In a strongly nonlinear range, a wave turbulence regime can be excited with
thousands of modes involved in an energy cascade from large to small wavelengths [4–7]. The energy cascade may be
produced by shaking a large plate vigorously: this technique was used in the past in theaters to simulate the sound of
thunders. Striking a large gong (in particular the Chinese tam-tam) results in a build-up of energy to the high-frequency
range occurring a few milliseconds after the strike [8]: the bright, shimmering sound produced is another perceptual trace
of the energy cascade [9,8,10] which is the phenomenon at the core of the wave turbulence theory.

The goal of the work presented here is the time-domain resolution of strongly nonlinear vibrations of plates, and the
targeted application is the sound synthesis of gongs and cymbal-like instruments. The scheme is constructed in order to
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meet a number of salient features. Firstly, the numerical setup should be capable of simulating a complex damping
mechanism, as loss effects are key in order to produce realistic sounds. Secondly, the scheme should be capable of
calculating the linear (eigenfrequencies) as well as the nonlinear parameters with a high degree of accuracy. Finally, the
method should be able to take into account thousands of modes interacting together in a strongly nonlinear regime.

From the numerical point of view, the dynamics is stiff and needs ad hoc time-stepping methods with robust stability.
Within this field, finite difference methods have already been used with success, see e.g. [11,12,3]. However, temporal
models for damping laws are difficult to implement in a finite-difference scheme, so that one usually resorts to a simplified
loss model within this framework. Moreover, convergence of the eigenfrequencies and nonlinear terms is slow, so that, for
increased accuracy, one needs to use very refined grids. A higher accuracy, in turn, is obtained at the expense of an increased
computational burden that could quickly get out of reach. Another scheme has been developed in [13], based on a simplified
shell model together with a modal approach and cubature schemes aimed at improving the computational time; despite
being able to produce nonlinear sounds, such schemes do not produce a strongly nonlinear regime with an energy cascade,
which – as it was pointed out – is the most desirable feature of gong and cymbals from an auditory perspective.

The aim of the present paper is to show that a modal method can be used to simulate efficiently the complex vibratory
response of vibrating plates at large amplitudes. One advantage of the proposed method relies in the fact that modal
damping can be tuned at will to fit specific damping laws (obtained from measurements or otherwise). As the perception of
losses is key in order to retrieve realistic sounds, this feature is essential in the choice of the method. The equations to be
solved are the von Kármán equations for plates. The numerical challenge in this context resides in the very large number of
modes involved in the vibrations. A key point in the proposed method is to use a conservative scheme for the time
integration, where stability is obtained as a direct consequence of energy conservation.

The paper is organized as follows. In Section 2, the von Kármán plate model is recalled. Then the modal approach is
developed in a general framework, without referring to a particular geometry, nor to specific boundary conditions. It is only
assumed that the eigenproblem has been solved and that the modes are known in some manner (by analytic or numerical
methods). The conservative scheme for the resulting set of Ordinary Differential Equations (ODEs) is then given, and it is
shown that discrete numerical energy is conserved. Section 3 shows how the method can be applied to synthesize the sound
of gongs and cymbals. The cases of two plates with different geometries and boundary conditions are proposed as
illustrative examples. The first of such cases is that of a circular plate with a free edge, for which the modes are analytic. The
second case is that of a rectangular plate with simply supported, in-plane movable edges: this is a more difficult case
because the in-plane modes do not have an analytic solution and thus a numerical strategy is required. The versatility of the
method is illustrated by synthesizing realistic sounds of gongs and cymbal-like instruments. The method, being completely
general, can be extended to any other type of boundary conditions and geometry for plates whose nonlinear dynamics is
described by the von Kármán equations. Thanks to this method – with reasonable computational resources – simulations of
strongly nonlinear regimes with up to a thousand interacting modes are possible. It is hoped that this result will give new
impetus to modal methods for time-domain simulations in nonlinear regimes.

2. Models and methods

2.1. The von Kármán equations for perfect plates

The model equations for strongly nonlinear vibrations of plates considered in this paper are the von Kármán [14–17]. The
basic assumptions for such system can be found in many textbooks and articles, see e.g. [17–19], and they are briefly recalled
here: the material of the plate is supposed to behave according to the linear elasticity theory; the kinematics is of Kirchoff–
Love type and thus transverse shear is neglected; the in-plane Green–Lagrange strain tensor is truncated so to keep a single
second-order correction to the linear part. When in-plane external forcing is not present, an Airy stress function can be used
in order to describe longitudinal motions. The equations of motion are then expressed in terms of the transverse
displacement wðx; tÞ and the Airy stress function Fðx; tÞ, where x denotes the (two-dimensional) space variable and t the
time, and are often referred to as the Föppl–von Kármán equations [18]. They read for perfect isotropic plates:

ρh €wþDΔΔw¼Lðw; FÞþpðx; tÞ%Rð _wÞ; (1a)

ΔΔF ¼ %
Eh
2
L w;wð Þ; (1b)

where ρ is the material volume density, h the plate thickness, and D stands for flexural rigidity: D¼ Eh3=12ð1%ν2Þ, with E
and ν respectively Young modulus and Poisson ratio. Δ represents the two-dimensional Laplacian operator, while pðx; tÞ
stands for the normal external forcing, and Rð _wÞ is a generic expression for the viscous damping depending on the velocity
field. Both p and R functions will be given when needed. The operator L is generally referred to as the “von
Kármán operator” or “Monge–Ampère form” in the literature [17,20] and may be expressed in intrinsic coordinates, for
two functions f ðxÞ and gðxÞ, as

Lðf ; gÞ ¼ΔfΔg%∇∇f :∇∇g; (2)

where : denotes the doubly contracted product of two tensors.
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2.2. Modal approach

In this section the main steps of the discretization, using the linear normal modes as basis functions in the Galerkin
procedure, are briefly recalled. The derivation is provided in a general manner, hence no specific boundary conditions are
given and the explicit form of the eigenfunctions are not stated. It is only assumed that the linear problem is solved by a
given method, analytical or numerical. Let fΦkðxÞgkZ1 be the eigenmodes of the transverse displacement. These functions
are the solutions of the Sturm–Liouville eigenvalue problem:

ΔΔΦk xð Þ ¼
ρh
D
ω2

kΦk xð Þ; (3)

together with the associated boundary conditions. In Eq. (3), ωk stands for the kth radian eigenfrequency. The linear modes
are defined up to a constant of normalization that can be chosen arbitrarily. For the sake of generality, Sw denotes the
constant of normalization of the function Φ ¼ SwΦkðxÞ=JΦk J . The norm is obtained from a scalar product 〈α;β〉 between
two functions αðxÞ and βðxÞ, defined as

〈α;β〉¼
Z

S
α β dS⟶JΦk J2 ¼ 〈Φk;Φk〉; (4)

where S represents the area of the plate. The eigenmodes for the Airy stress function are also considered and denoted as
fΨ kðxÞgkZ1. They are solutions of the following eigenvalue problem:

ΔΔΨ kðxÞ ¼ζ4kΨ kðxÞ; (5)

together with the associated boundary conditions for F. The linear modes so defined are orthogonal with respect to the
scalar product, and are therefore a suitable function basis [21]. Orthogonality between two functions Λmðx; yÞ;Λnðx; yÞ is
expressed as

〈Λm;Λn〉¼ δm;n JΛm J2; (6)

where δm;n is Kronecker's delta.
The Partial Differential equations (1) for the perfect plate are discretized by expanding the two unknowns w and F along

their respective eigenmodes

w x; tð Þ ¼ Sw
XNΦ

k ¼ 1

ΦkðxÞ
JΦk J

qk tð Þ; (7a)

F x; tð Þ ¼ SF
XNΨ

k ¼ 1

Ψ kðxÞ
JΨ k J

ηk tð Þ; (7b)

where qk(t) and ηkðtÞ represent respectively the modal transverse displacement and the modal coordinate for the Airy stress
function. The integers NΦ and NΨ represent respectively the number of transverse and in-plane modes that will be kept in
the truncations to ensure convergence. Using a standard Galerkin procedure, Eqs. (7) are first introduced in Eq. (1b), which is
then multiplied by Ψk. Integrating over the surface of the plate and using the orthogonality relationship one obtains

ηk ¼ %
Eh

2ζ4k

S2w
SF

XNΦ

i;j

qiqj

R
SΨ kLðΦi;ΦjÞ dS

JΨ k J JΦi J JΦj J
: (8)

The coefficient appearing in Eq. (8) can be rewritten as

Hk
i;j ¼

R
SΨ kLðΦi;ΦjÞ dS

JΨ k J JΦi J JΦj J
; (9)

and expresses the nonlinear coupling between in-plane and transverse motions. Following the same procedure, Eqs. (7) are
introduced in Eq. (1a). Multiplying by Φs and integrating over the surface leads to

€qsþω2
s qsþ2ξsωs _qs ¼

SF
ρh

XNΦ

i ¼ 1

XNΨ

j ¼ 1

qiηj

R
SΦsLðΦi;Ψ jÞ dS

JΦs J JΦi J JΨ j J
þps tð Þ: (10)

The coefficient appearing in Eq. (10) is rewritten as

Esi;j ¼
R
SΦsLðΦi;Ψ jÞ dS

JΦs J JΦi J JΨ j J
: (11)

Note that in Eq. (10), the modal external force has been expressed as

ps tð Þ ¼
1

ρhSw JΦs J

Z

S
p x; tð ÞΦs xð Þ dS: (12)

Note also that a modal damping term has been introduced as 2ξsωs _qs in Eq. (10). This modal damping ratio can be tuned at
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will by selecting appropriate values for each ξs. Such values may be derived from experiments, see e.g. [22,23], and thus they
will be used in the remainder of this paper for describing losses in the system.

Grouping together Eqs. (10) and (8) gives the temporal system of Ordinary Differential Equations (ODEs) to solve as

€qsþω2
s qsþ2ξsωs _qs ¼

SF
ρh

XNΦ

k ¼ 1

XNΨ

l ¼ 1

Esk;lqkηlþps tð Þ; (13a)

ηl ¼ %
Eh

2ζ4l

S2w
SF

XNΦ

m;n
Hl

m;nqmqn: (13b)

Elimination of the auxiliary variable ηl from Eqs. (13) is generally performed (see e.g. [24–26,15,2]) by substituting (13b) in
(13a), resulting in a closed system for the transverse modal displacements

€qsþω2
s qsþ2ξsωs _qs ¼ %

ES2w
ρ

XNΦ

k;m;n

XNΨ

l ¼ 1

Hl
m;nE

s
k;l

2ζ4l

" #

qkqmqnþps tð Þ; (14)

where the fourth-order tensor Γs
k;m;n may be introduced [17,27] as

Γs
k;m;n ¼

XNΨ

l ¼ 1

Hl
m;nE

s
k;l

2ζ4l
: (15)

In the present study, both the quadratic and cubic formulations will be used: the quadratic ðq;ηÞ formulation expressed in Eqs. (13)
will be the basis for the numerical scheme shown in Section 2.5; however, in order to assess the accuracy of the scheme,
convergence of a few values of the cubic coupling coefficients Γs

k;m;n appearing in will be discussed in some detail in later sections.

2.3. Symmetry properties

This section is intended to recall some important symmetry properties of the presented tensors ðHk
i;j; E

l
m;nÞ. These

properties will be of some importance in the remainder of the paper, as they enable the derivation of the stable conservative
scheme. Moreover, the same properties can be employed in order to reduce the memory and computational burden of the
scheme.

The first obvious symmetry is for Hk
i;j, and states that

Hk
i;j ¼Hk

j;i; (16)

as a direct consequence of the bilinear symmetry of the von Kármán operator Lð&; &Þ.
The second property links Hk

i;j and Elm;n using the so-called triple self-adjointness property (TSA) of the von
Kármán operator Lð&; &Þ, fully studied in [17,28]. The TSA stems from the following identity, for three given functions f ; g;h,

Z

S
fLðg;hÞ dS¼

Z

S
Lðf ; gÞh dSþC; (17)

where C is a contour integral, the complete expression of which may be found in [17]. In most cases, this contour integral C
vanishes, giving rise to a straightforward relationship between the coefficients as

Elm;n ¼Hn
m;l: (18)

An exhaustive list where the contour integral vanishes, depending on the classical boundary conditions, is given in [17]. Note
that this property is assumed to be fulfilled in the remainder of the paper; as a consequence, the conservative scheme
presented after cannot be applied to the cases for which (18) does not hold.

2.4. Continuous and discrete modal energies

In this section, the kinetic and potential energies for the von Kármán thin plate equations are recalled, as they are needed
for identification when deriving the conservative scheme. The continuous expressions of the energies can be found in
[15,29,3,28] and read

T ¼
Z

S

ρh
2

_w2 dS; (19a)

V ¼
Z

S

D
2
ðΔwÞ2 dS; (19b)

U ¼
Z

S

1
2Eh

ðΔFÞ2 dS; (19c)
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for, respectively, the kinetic energy T, the flexural stored energy V and the membrane energy U. Note that the in-plane
energy term U has been here expressed with respect to the Airy stress function F.

The modal counterparts of the energies are derived by introducing the modal expansions (7) and using the properties of
the eigenmodes together with integration by parts. One finally gets

T ¼
ρh
2
S2w

XNΦ

k ¼ 1

_q2
k tð Þ; (20a)

V ¼
ρh
2
S2w

XNΦ

k ¼ 1

ω2
kq

2
k tð Þ; (20b)

U ¼
S2F
2Eh

XNΨ

k ¼ 1

ζ4kη
2
k tð Þ: (20c)

When damping and forcing are not considered, the total energy E¼ TþVþU is conserved, and reads

d
dt

TþVþUð Þ ¼ 0: (21)

2.5. Energy-conserving scheme

In this section, a stable scheme for the perfect plate is presented. This scheme is taken from [29], where a full finite-
difference method for the von Kármán equations is presented. The temporal part of such scheme is here applied to the
modal equations. The conservation of energy for the modal equations and its specific arguments are here presented for the
first time. The scheme is applicable for the undamped and unforced perfect plate in the modal description given by Eqs. (13),
i.e. in the quadratic ðq;ηÞ formulation. Let us first introduce a list of discrete time operators acting on a state vector qðnÞ
defined at time step n. The backward and forward shift operators are, respectively,

et%qðnÞ ¼ qðn%1Þ; etþqðnÞ ¼ qðnþ1Þ: (22)

Backward, centered, forward approximations to first time derivatives are defined as

δt% '
1
k
1%et%ð Þ; δt& '

1
2k

etþ %et%ð Þ; δtþ '
1
k
etþ %1ð Þ; (23)

where k¼ 1=f S refers to the timestep, fS being the sampling frequency. An approximation to the second time derivative can
be constructed by combining the previous operators,

δtt ' δtþδt% ¼
1
k2

etþ %2þet%ð Þ: (24)

Backward, centered, forward averaging operators are introduced as

μt% '
1
2

1þet%ð Þ; μt& '
1
2

etþ þet%ð Þ; μtþ '
1
2

etþ þ1ð Þ: (25)

The temporal conservative scheme for the case of the perfect, undamped and unforced plate reads

δttqs nð Þþω2
s qs nð Þ ¼

SF
ρh

XNΦ

k ¼ 1

XNΨ

l ¼ 1

Esk;lqk nð Þ μt&ηl nð Þ
! "

; (26a)

μt%ηl nð Þ ¼ %
Eh

2ζ4l

S2w
SF

XNΦ

i;j ¼ 1

Hl
i;jqi nð Þ et% qj nð Þ

h i
: (26b)

This scheme is second-order accurate and implicit: due to the presence of the centered averaging operator in Eq. (26a), the
coefficient multiplying the vector qðnþ1Þ depends on the timestep.

Let us now demonstrate that the proposed scheme is energy-conserving. The idea is to retrieve a counterpart of Eq. (21)
at the discrete level. To that purpose, Eq. (26a) is multiplied by ρhδt&qsðnÞ and then summed over the index s. In addition, Eq.
(26b) is multiplied by δtþ , so that

ρh
XNΦ

s ¼ 1

δt&qsðnÞ
# $

δtt qsðnÞþρh
XNΦ

s ¼ 1

δt&qsðnÞ
# $

ω2
s qsðnÞ ¼ SF

XNΦ

k;s ¼ 1

XNΨ

l ¼ 1

Esk;l δt&qsðnÞ
# $

qkðnÞðμt& ηlðnÞÞ (27a)

μt% δtþηlðnÞ
# $

¼ %
EhS2w
2ζ4l SF

XNΦ

k;s ¼ 1

1
k
Hl

k;s qkðnþ1ÞqsðnÞ%qkðnÞqsðn%1Þ
# $

(27b)
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Now, owing to the symmetry property of the H tensor, see Eq. (16), the indices of the first term on the right-hand side of Eq.
(27b) can be swapped to give

1
k
Hl

k;s qkðnþ1ÞqsðnÞ%qkðnÞqsðn%1Þ
# $

¼ 2Hl
k;sqk nð Þδt&qs nð Þ (28)

Hence, Eq. (27b) can be rewritten as

%
ζ4l SF
EhS2w

μt% δtþηlðnÞ
# $

¼
XNΦ

k;s ¼ 1

Hl
k;sqk nð Þδt&qs nð Þ (29)

Owing to the triple self-adjointness property, one may use Eq. (18) stating that Esk;l ¼Hl
k;s, and insert the left-hand side of

Eq. (29) into the right-hand side of Eq. (27a), yielding

SF
XNΦ

k;s ¼ 1

XNΨ

l ¼ 1

Hl
k;s δt&qs nð Þ
# $

qk nð Þ μt&ηl nð Þ
# $

Þ ¼ %
S2F

EhS2w

XNΨ

l ¼ 1

ζ4l μt% δtþηl nð Þ
# $! "

μt&ηl nð Þ
# $

; ¼ %
S2F

2EhS2w
δtþ

XNΨ

l ¼ 1

ζ4l μt% ηlðnÞ
2

% &
: (30)

The left-hand side of Eq. (27a) can be rewritten as

ρh
XNΦ

s ¼ 1

δt&qsðnÞ
# $

δtt qs nð Þþρh
XNΦ

s ¼ 1

δt&qsðnÞ
# $

ω2
s qs nð Þ ¼

ρh
2
δtþ

XNΦ

s ¼ 1

δt%qsðnÞ
# $2þω2

s qsðnÞ et% qsðnÞ
# $% &

(31)

Putting together Eqs. (30) and (31) gives

δtþ
XNΦ

s ¼ 1

S2w
ρh
2

δt%qsðnÞ
# $2þω2

s qsðnÞ et%qsðnÞ
# $h i

þ
S2F
2Eh

XNΨ

l ¼ 1

ζ4l μt% ηlðnÞηlðnÞ
# $# $

( )
¼ 0: (32)

The discrete counterparts of kinetic and potential energies defined by Eqs. (19) can now be identified from Eq. (32) as

t¼
XNΦ

m ¼ 1

τm nð Þ ¼
ρh
2
S2w

XNΦ

m ¼ 1

δt% qmðnÞ
# $2

; (33a)

v¼
XNΦ

m ¼ 1

νm nð Þ ¼
ρh
2
S2w

XNΦ

m ¼ 1

ω2
mqm nð Þ et% qmðnÞ

# $
; (33b)

u¼
XNΨ

l ¼ 1

υl nð Þ ¼
S2F
2Eh

XNΨ

l ¼ 1

ζ4l μt% ηlðnÞηlðnÞ
# $# $

; (33c)

where the modal contributions to kinetic and potential energies, τmðnÞ, νmðnÞ and υlðnÞ have also been introduced. With
these notations, Eq. (32) is a discrete counterpart to Eq. (21), as it reads δtþ ðtþvþuÞ ¼ 0.

To conclude the proof, let us show that the discrete energy is positive definite. The in-plane discrete potential energy u is
positive definite, being the sum of squared numbers. Let us now consider the remaining term, ϵlmðnÞ ¼ τmðnÞþνmðnÞ, which is
the contribution to the linear energy of the transverse mode m at the time n. Developing the operators in the definition of
ϵlmðnÞ gives

ϵlm nð Þ ¼
ρh
2
S2w

qmðnÞqmðnÞþqmðn%1Þqmðn%1Þ%2qmðnÞqmðn%1Þ
k2

þω2
m qm nð Þqm n%1ð Þ

' (
: (34)

This last expression can be written as the equation of a conic in the x%y space, where x¼ qmðnÞ and y¼ qmðn%1Þ. This gives

x2þy2þ2αxy¼
2k2ϵlmðnÞ
ρhS2w

with α¼
k2ω2

m
2

%1: (35)

A closed conic (ellipse or circle) is obtained when jαjo1, in which case one obtains the two following relationships:

2k2ϵlmðnÞ
ρhS2w

40 (36)

jxj; jyjr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2ϵlmðnÞ

ρhð1%α2ÞS2w

vuut : (37)

Eq. (36) shows that ϵlmðnÞ40, so that the discrete energies introduced are positive definite. Eq. (37) is the bound on the
solution size. Note that the stability condition jαjo1 is obtained when

ko 2
ωm

; (38)

which gives the bound on the step size k for ensuring stability. This relationship must be fulfilled for all m¼ 1;…NΦ; thus
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the most restrictive case is obtained when m¼NΦ. Hence the associated sampling rate f S ¼ 1=k is directly related to the
largest eigenfrequency retained in the truncation: f NΦ

¼ωNΦ=2π, through the simple relationship: f S4πf NΦ
. In practice, for

a given modal truncation at NΦ the minimum step size is immediately calculated. The associated sampling frequency
appears to be small, as only 3 points per period discretize the highest frequency of the system. This is another appealing
property of the energy-conserving scheme. Note finally that the conservative scheme has been introduced here for the case
of perfect plates. The scheme is extended to the case of the von Kármán plate equations with a static, geometric
imperfection, in Appendix A.

The conservation of energy is shown on a particular example and illustrated in Fig. 1. A rectangular plate of lateral
dimensions Lx¼0.4 m, Ly¼0.6 m, thickness h¼1 mm, and made of steel with material parameters E¼200 GPa, ν¼0.3 and
density ρ¼7860 kg m%3 is selected. The boundary conditions are simply supported for the transverse motions and free for
the in-plane motions. This particular case will be used again in Section 3.3 where more details will be given on the
computational framework for the eigenmodes. For this illustrative example, the plate is undamped and excited by a Dirac
delta function in space and time, located at excitation point xin ¼ ½0:45Lx 0:45Ly), and with an amplitude of 1000 N. The
number of transverse modes retained for the simulation is NΦ¼100, and NΨ ¼200 for the in-plane modes. The
eigenfrequency of the 100th transverse mode is 1400 Hz, and the minimum sampling rate according to Eq. (38) is
4400 Hz. The sampling frequency has been selected as fS¼10 000 Hz for the simulation. With that set-up, computation of
the H coefficients lasts 16 s while computing one second of simulation lasts 55 s. Fig. 1(a) shows the output displacement at
point x0 ¼ ½0:51Lx 0:11Ly), which is of the order of the thickness h so that geometric nonlinearities are excited. Fig. 1(b)
shows the three components t, v, u of the energy and the sum is found to be perfectly conserved up to machine accuracy.

2.6. Note on implementation details

Now that the theoretical aspects of the modal approach have been presented, it is worth outlining a brief discussion
regarding practical implementation details. As a rule of thumb, one should implement the modal code in two parts, the first
being the offline calculation of the eigenmodes and coupling coefficients, and the second being the actual time integration.
It is worth stressing the fact that circular plates and rectangular plates of the same aspect ratio have the same eigenmodes
and coupling coefficients (up to a multiplicative constant) and so the offline calculation can be done once and for all for a
whole family of plates.

A second observation considers the memory requirements for the fourth-order coefficient tensor Γs
n;p;q. Because the

simulations comprise usually a large number of modes (say, NΦ * 500), the physical memory occupied by the tensor is
enormous (for 5004 double precision entries, this is of the order of 500 Gb). This problem can be circumvented in two ways:

+ by making use of the symmetry properties detailed in Section 2.3, which yield families of indices (s;n; p; q) which
correspond to the same numerical value. This value can be calculated once and applied to the whole family;

+ by storing the sole tensor Hk
i;j of considerable smaller size.

The latter choice is particularly useful for memory savings: with NΦ ¼ 500, NΨ ¼ 200, a double-precision tensor file occupies
about 0.4 Gb of physical memory. Note that, when using a numerical computing environment such as Matlab, nested loops
should be avoided at all times, and replaced by convenient tensor multiplications. Matlab implementation of the modal code
is possible and yields reasonable calculation times, as a few examples in the next section will demonstrate. In particular,
products appearing on e.g. the right-hand sides of Eqs. (26a) and (26b) can be vectorized with proper matrix
representations, so that no loops are needed to compute them, see [28] for more details.
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Fig. 1. Numerical demonstration of energy conservation. Rectangular undamped plate of lateral dimensions Lx¼0.4 m, Ly¼0.6 m, thickness h¼1 mm,
excited by a Dirac delta function of amplitude 1000 N (duration of one sample). (a) Displacement of the plate at x0 ¼ ½0:51Lx 0:11Ly), normalized by the
thickness. (b) Energies. The black continuous and constant thin line is the total discrete energy h¼ tþvþu. Blue thin line (black in BW printing): kinetic
energy t, magenta thin oscillating line (grey in BW printing) : flexural stored energy v. The red thin line oscillating near 0 is the membrane (in-plane)
energy u. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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3. Applications to sound synthesis of cymbal and gong-like instruments

This section is concerned with application of the conservative modal scheme to the case of damped impacted plates, with
the purpose of synthesizing the sound of gongs and cymbal-like instruments. The performance of the method will be
highlighted by demonstrating its ability in producing strongly nonlinear dynamics with a large number of modes involved in
a regime of wave turbulence. Two different cases will be shown: a circular plate with a free edge, and a rectangular plate
with simply supported and in-plane movable edges. First, the excitation force used for both simulation set-ups is briefly
explained.

3.1. Excitation

The excitation is assumed to represent the case of an impact (such that of a mallet in the case of the gong or a drumstick
in the case of a cymbal) on a given point x0 on the surface of the plate. In the simplest case, the force model is in the form of
a pointwise contact

pðx; tÞ ¼ δðx%x0ÞgðtÞ (39)

together with a temporal distribution having the form of a raised cosine [11]:

g tð Þ ¼
pm
2

1þ cos πðt%t0Þ=Twid
# $! "

if jt%t0jrTwid;

0 if jt%t0j4Twid:

8
<

: (40)

The temporal distribution is represented in Fig. 2. Two input parameters can be selected so as to mimic the force
interaction produced by the impact of a drumstick (hard impact with a short time interaction of the order of 1 ms) or a
mallet (soft impact with a longer time interaction of the order of 5–10 ms): half the interaction time Twid, and the maximum
of the force amplitude pm. Fig. 2 shows two different examples for a rather soft impact (Twid¼5 ms, pm¼20 N), and a hard
one (Twid¼1 ms, pm¼100 N).

3.2. A circular plate with a free edge

3.2.1. Geometry and boundary conditions
A circular plate of radius a and thickness h, with a free edge, is first considered. The boundary conditions then read, for

the two unknowns wðr;θ; tÞ and Fðr;θ; tÞ [25]:

8t; 8θA 0;2π½ ); w;rrþ
ν
a
w;rþ

ν
a2
w;θθ ¼ 0 at r¼ a; (41a)

w;rrrþ
1
a
w;rr%

1
a2
w;rþ

2%ν
a2

w;rθθ%
3%ν
a3

w;θθ ¼ 0 at r ¼ a; (41b)

F ;rþ
1
a
F ;θθ ¼ 0; F ;rθþ

1
a
F ;θ ¼ 0 at r¼ a: (41c)

Besides the advantage of simulating a geometry which is close to that of a gong or a cymbal, there are two mathematical
advantages of the circular geometry with a free edge. First the eigenmodes for both the transverse displacement and the
Airy stress function are analytic, and can thus be easily tabulated in order to compute the nonlinear coupling coefficients Hp

i;j.
The eigenfunctions are combinations of Bessel functions. They are given in [25], and recalled in Appendix B for the sake of
completeness. The eigenfunctions are here denoted by either a single integer number p – sorting the frequencies from small
to large – or by a pair (k,n), where k denotes the number of nodal diameters and n the number of nodal circles. As it is usual
with circular symmetry, asymmetric modes with ka0 are degenerated so that two eigenvectors are found for the same
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Fig. 2. Impact force model used for the simulations, centered at t0¼50 ms. Blue line: soft impact with Twid¼5 ms, pm¼20 N. Black line: hard impact with
Twid¼1 ms and pm¼100 N. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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eigenfrequency. The second advantage is that the von Kármán equations can be made nondimensional with respect to the
radius a and thickness h, following e.g. [25]. Hence all the data for the model (eigenfrequencies, coupling coefficients) can be
computed once and for all, since changing the radius or the thickness does not change the nondimensional equations. This
case is very different from that of a rectangular plate for instance, where the aspect ratio between the lengths is a parameter
that appears in the nondimensional equations. One can take advantage of these two specific features in order to greatly
simplify the implementation details and speed up the calculations.

3.2.2. Coupling coefficients
For the circular plate, eigenfrequencies for both the transverse and in-plane problems are analytic so that the numerical

values of fωk; ζpgk;pZ1 used to feed the model can be considered exact. In the truncation process, the number of in-plane
modes NΨ should be evaluated by looking at the convergence of the cubic coupling coefficient Γp

p;p;p defined in Eq. (15), see
e.g. [25,27,30]. As explained in [25], some specific rules exist, so that, for a given transverse mode p, only a few in-plane
modes participate with a non-vanishing contribution to the summation in Eq. (15). The rules are as follows:

+ For a purely axisymmetric mode Φð0;nÞ, only the axisymmetric in-plane modes fΨ ð0;iÞgiZ1 participate to the summation.
+ For an asymmetric mode Φðk;nÞ with ka0, then the coupling involve only axisymmetric in-plane modes fΨ ð0;iÞgiZ1 as

well as asymmetric in-plane modes having twice the number of nodal diameters fΨ ð2k;iÞgiZ1.

Hence for a given mode p, the convergence of the summation for Γp
p;p;p is achieved within a small subset of all the possible

in-plane modes. Let us denote by Nconv
Ψ the cardinal of this subset of admissible modes. The convergence of three coefficients

Γp
p;p;p is shown in Fig. 3, for three different modes of high frequencies. As simulations with a thousand modes are in view, the

convergence of high-frequency modes has been selected for illustration. An axisymmetric mode with a large number of
nodal circle, mode (0,18) has been selected together with a purely asymmetric one, mode (50,0), and a mixed mode : (24,8).
Table 1 recalls the values of the first three modes and shows the order of appearance of the selected ones for illustration
(nondimensional numbers are given for all numerical values). For asymmetric modes (k,n) with ka 0, the label p takes into
account the two preferential configurations.

Fig. 3 reveals that, within the subset of admissible in-plane modes, the convergence is rather fast so that a number of 60
in-plane modes is enough to ensure the good convergence of all nonlinear coupling coefficients up to the 1000th transverse
mode. For the purely axisymmetric modes, a simple rule of thumb is applicable, since the convergence is always obtained as
soon as in-plane modes with twice the number of nodal circles than the selected transverse mode are taken into account.
For asymmetric modes no such simple rule seems to exist. Note that for purely asymmetric modes such as the (50,0) used as
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Fig. 3. Convergence of nondimensional coupling coefficient Γp
p;p;p as a function of the number of in-plane admissible modes Nconv

Ψ , for (a) p¼846,
axisymmetric mode (0,18); (b) p¼715, mode (50,0); (c) p¼881, mode (24,8).

Table 1
Nondimensional values of eigenfrequencies ωkn and coupling coefficients Γp

p;p;p for some modes of the circular plate with a free edge. The modes are sorted
with respect to increasing eigenfrequencies.

Mode label p Mode (k,n) ωkn ωkn=ωð2;0Þ Γp
p;p;p Nconv

Ψ

1,2 (2,0) 5.093 1 1.898 3
3 (0,1) 9.175 1.8 8.575 4
4,5 (3,0) 11.90 2.3 17.03 4
715,716 (50,0) 2687.9 527.7 8.436 , 106 65
846 (0,18) 3196.8 627.6 2.846 , 106 36
881,882 (24,8) 3352.1 658.1 1.783 , 106 50
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an example, the convergence is faster at the beginning but then very slow so that it appears difficult to achieve a four digits
accuracy. However, for the given example, mode (50,0), a three-digits accuracy is obtained with Nconv

Ψ ¼ 33 only, in line with
the results for the other coefficients. For the remainder of the study, a computation with 1000 transverse and 60 in-plane
modes has been realized and stored for all the subsequent calculations. This computation, made offline, is lengthy but valid
for all circular plates.

3.2.3. Results of simulations
Two different cases are tested to show the versatility of the method. First the sound of a large gong (or Chinese tam-tam),

with a bright, shimmering sound together with an audible cascade resulting in a build-up of energy to higher frequencies a
few milliseconds after the strike is looked for. Second, the case of a strongly impacted thin crash cymbal, with a very large
amount of energy to very high frequencies from the strike and a pronounced decay of energy is investigated. The parameters
for these two cases are very different but both show a strongly nonlinear regime, giving a proof of the ability and flexibility
of the numerical scheme to produce an extremely rich variety of realistic sounds.

The case of a large gong is obtained with the following parameters : radius a¼0.4 m, thickness h¼1 mm. The material
parameters are selected (for all cases) as: E¼2.1011 Pa, ν¼0.3 and ρ¼7860 kg m%3. The first eigenfrequency is 7.7 Hz and
the 1000th is 5747 Hz. The stability condition (38) for the sampling frequency f S ¼ 1=k reads f S4πf 1000 as 1000 modes will
be used in the simulations, hence f S418 055 Hz. For the first set of simulations, the sampling frequency has been selected
as 40 kHz. The input point where the strike excites the plate is located near the edge at r¼ 0:92a and with an angle of π=4.
For the output of the simulation, the displacement at r¼ 0:896a is selected, with an angle of 0.519 rad in order to avoid a
radius with too many modes having a nodal point.

The damping law is given mode by mode and can be chosen as desired. The generic term for mode p is of the form cp _qp.
For the present case, the damping law is selected to follow a power-law: cp ¼ 0:005ω0:6

p in dimensional form. This power-law
has been selected as being representative of the damping in large metallic plates as measured in [31] and is used here to
show how a complex frequency dependence can be easily used in the context of modal representation. Finally to simulate
the impact of a soft mallet, the interaction time Twid is selected as 6 ms. Fig. 4 shows the displacement of the output w and
the spectrograms of the velocity, for two different amplitudes of the striking force: pm¼40 N and pm¼80 N. One can first
remark that the amplitude of the displacement is larger than the thickness at the edge, with a maximum amplitude at 5h for
the strike at 40 N and 7h for 80 N. An obvious build-up of energy, signature of the cascade, is observed for the two cases.
While the spectrum of the input force contains frequencies up to around 1000 Hz, energy flows to the higher frequencies, up
to 2500 Hz for the first strike, and 5000 Hz for the second. This property allows us to illustrate the optimal choice of the
number of transverse modes NΦ, which should be chosen as the maximal frequency present in the simulations. For the first
case, one could have chosen to restrain the truncation to 500 modes as f500¼2840 Hz, in order to speed up the calculations.
The choice of 1000 modes is large for the first case but optimal for the second case where the energy flows near the highest
frequency available. One can also observe that the slope of the build-up of energies through frequencies increases with the
amplitude of the strike. As demonstrated in [32], when damping is not present the increase of energy in the cascade should
behave as t1=3. Here the power-law behavior is slightly discernable but mostly hidden by the damping, as discussed for
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Fig. 4. Numerical simulation for the sound synthesis of a gong, fS¼40 kHz. Circular plate of radius a¼0.4 m and thickness h¼1 mm. (a), (c) Displacement
and (b), (d) spectrograms of the output point w located at r¼ 0:896a. Soft strike with Twid¼6 ms and (a), (b) pm¼40 N, (c), (d) 80 N.
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example in [31,32]. The sounds are given as supplementary material in the companion web-page of the paper.1 They have
been obtained from the velocity of the output point. One can remark that they are very realistic with an excellent timber
richness.

The simulation times for these cases are indicatory given. The simulations are run on a standard desktop with single
processor with a CPU clock at 2.4 GHz. The time needed for one seconds of sound is about 3 h at 40 kHz. Note that with
respect to the stability condition, the sampling frequency fS can be set to 20 kHz, resulting in a simulation time of 1h30
per second, without losing any quality in the sound produced. Finally, one could obtain better simulation times for the first
case by selecting NΦ ¼ 500, resulting in a simulation time of 35 min per second. By parallelizing the code or using better
machine performance as e.g. GPU, there is no doubt that the proposed method allows one to obtain rich and realistic sounds
for a reasonable computational cost.

The case of a crash cymbal is now investigated. The idea is to use the same framework and set the parameters so as to
obtain the crashing sound of a small cymbal vigorously beaten by a woodstick. The radius is selected as a¼0.2 m and the
thickness as h¼0.5 mm. With the material parameters unchanged, the first eigenfrequency is 15.5 Hz while the 1000th is
11 495 Hz. The minimum sampling frequency for ensuring stability is 36 100 Hz; it has thus been selected as 80 kHz in the
simulations shown below. The strike parameters have been set to a small interaction time, thus Twid¼1 ms so as to excite a
large bandwidth from the input, together with a larger amplitude pm. The damping has been adjusted to larger values as
compared to the gongs, and the law cp ¼ 0:007ω0:7

p has been selected. The result of a simulation with a strike of amplitude
pm¼120 N is shown in Fig. 5. During the first milliseconds after the strike, the vibration amplitude reaches 1 cm, 20 times
the thickness. This results in a very quick build-up of energy with very high frequencies up to 20 kHz, which are evidenced
in the zoom on the time domain together with the spectrogram. This case is thus very different from the previous one,
where 1000 modes were enough to represent the frequency content of the strongly nonlinear regime. Here with 1000
modes the model contains modal components up to 11 500 Hz and the modal truncation is clearly seen in the spectrogram.
However for sound synthesis purposes, the brilliance of the sound is very well represented with the modes up to 11 500 Hz,
so that the truncation has no dramatic influence on the sound produced. Indeed, once again the sounds obtained are very
realistic with a very rich spectrum and a particular brilliance, typical of a crashing sound.

3.3. A rectangular, simply-supported plate

3.3.1. Geometry and boundary conditions
In this section a rectangular plate with transverse simply-supported boundary conditions is chosen. The plate, with

boundary δS, is supposed to have lateral dimension Lx, Ly. For the in-plane directions, a distinction is made in the literature
between a movable and an immovable edge (see, for example, [33,2]). For the present work, a movable edge is selected, for
which the conditions read (the subscripts n, t refer, respectively, to the normal and tangent directions to δS)

w¼ 0 8xAδS (42a)

w;nnþνw;tt ¼ 0 8xAδS (42b)

F ;nt ¼ F ;tt ¼ 0 8xAδS (42c)

Such conditions, despite not describing a load-free edge (a desirable case for sound synthesis), have the advantage of being
particularly simple. The solution for the transverse modes, in fact, is given in terms of sine functions [21]

Φk xð Þ ¼ sin
k1πx
Lx

sin
k2πy
Ly

for integers k1; k2: (43)

The eigenfrequencies are then easily obtained as

ω2
k ¼

D
ρh

k1π
Lx

' (2

þ
k2π
Ly

' (2
" #2

: (44)

The conditions for the in-plane function, on the other hand, can be worked out to yield a simplified form. Consider in fact
the following conditions:

F ¼ F ;n ¼ 0 8xAδS;

it is clear that these conditions are sufficient (but not necessary) to satisfy (42c) [17]. Such conditions, along with Eq. (5),
reduce the quest for the eigenmodes Ψk to the clamped plate problem. Despite not having a closed-form solution, this
problem was recently shown to have a semi-analytical solution based on the Rayleigh–Ritz method, yielding a few hundred
eigenmodes and associated frequencies with precision to, at least, four significant digits [27]. In short, such method allows
one to transform the continuous eigenvalue problem (Eq. (5)) to a discrete eigenvalue problem, easily treated by any
eigenvalue routines in many programming languages (C, Matlab, etc.). For that, a generic eigenfunction Ψk is written as a

1 The sounds for all the cases presented are given as wave files in the companion web-page of the paper hosted by Elsevier as well as in the following
URL: http://www.ensta-paristech.fr/ * touze/modalsynthesis.html. The reader is invited to listen to them for a perceptual comparison.
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weighted sum of expansion functions, in the following way:

Ψ kðxÞ ¼
XNΛ

n ¼ 1

anΛnðxÞ; (45)

for some carefully chosen functions Λn and unknown weights an. These weights, along with the eigenvalues ζk
4, are given by

solving the eigenproblem

Ka¼ζ4 Ma; (46)

where K, M are NΛ , NΛ matrices, obtained following the procedure detailed in [27]. The form of these matrices is given in
Appendix C. Note that, as pointed out in Section 3.2.1, the weights and frequencies depend on the aspect-ratio of the plate,
but they are invariant (up to a multiplying constant) for plates sharing the same aspect ratio.

3.3.2. Coupling coefficients
In this section, the convergence for some coupling coefficients is shown, and coupling rules given. The plate considered

in this section has an aspect ratio Lx=Ly ¼ 2=3. Note that nondimensional coefficients are obtained by multiplying Γs
k;m;n as in

Eq. (15) by ðLxLyÞ3 (these are the values plotted in the figures and considered in the table of this section).
As opposed to the circular case, it is difficult to have an a priori knowledge on the coupling rules. This is because the form

of the in-plane eigenfunctions is not known analytically, and thus only a numerical investigation can help in laying out
coupling rules. As for the circular case, coefficients of the kind Γp

p;p;p are investigated. For p≲50, the coefficients converge
quite rapidly with a number of in-plane modes NΨ * 50. Fig. 6 and Table 2 detail the convergence for some selected ðk1; k2Þ
modes, ðk1; k2Þ being defined in Eq. (44). A “staircase”-like behavior, where the value seems to be converging before stepping
in a discontinuous way to a higher value, is observed, as a reflection of the fact that numerous in-plane modes do not
participate to the convergence of the Γp

p;p;p coefficient. Hence, in order to obtain convergence, all in-plane modes must be
retained. The convergence is found to be rapid when at least one between k1 and k2 is small. On the other hand, when both
k1 and k2 are large, Fig. 6 shows that about 400 in-plane modes are necessary for the convergence of the * 500th transverse
mode. Note that the numerical method for the clamped case, detailed in Appendix B.2, was shown to yield robust solutions
up to the 400–500th mode, so that convergence of high-range nonlinear coefficients becomes only approximate when
considering a set of * 1000 modes. Nonetheless, sound synthesis is still possible with the stable scheme and approximate
nonlinear couplings.
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Fig. 5. Numerical simulation for the sound synthesis of a cymbal, fS¼80 kHz. Circular plate of radius a¼0.2 m and thickness h¼0.5 mm, hard impact with
Twid¼1 ms and amplitude pm¼120 N. (a) Time series of displacement at r ¼ 0:896a, with a close-up to observe the high frequencies in the first
milliseconds. (b) Spectrogram of the velocity at output point.
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3.3.3. Simulation results
In this section simulation results from a plate of aspect ratio Lx=Ly ¼ 2=3 are presented. To simulate a steel plate, the

physical parameters are chosen as E¼ 2 , 1011 Pa, ρ¼ 7860 kg=m3, ν¼ 0:3. The geometrical parameters are chosen as
Lx¼0.4 m, Ly¼0.6 m, h¼1.2 mm. To discuss the effects of damping, two simulations are presented in Fig. 7. For both
simulations, the idea is to strike the plate at high amplitudes in order to maximize the nonlinear effects. For that, the forcing
parameters are chosen as Twid ¼ 7 ms, pm¼300 N. The input is located at ½0:31Lx 0:43Ly), and the output is recorded at
½0:52Lx 0:37Ly). For figures (a)–(b), the damping law is selected as c¼ 0:004ω0:75þ0:08 kg=m2=s. As opposed to the circular
case, this damping law presents an added constant which dissipates energy at equal rates at all scales. This choice can be
useful in order to dissipate the lowest frequencies in a reasonable time, so to avoid a low-frequency modulation (especially
at the end of the time series) which may result unpleasant to the ear. For figures (c)–(d), all the parameters are kept
unchanged except for the damping, which now reads c¼ 0:04ω0:75þ0:08 kg=m2=s. Cases (a)–(b) simulate a hard contact
(such as that of a wooden drumstick) which gives rise to a cascade of energy up to about 9000 Hz, and after which the
damping effects start to dominate leaving a long queue typical of a gong. For this simulation, the number of retained modes
is NΦ ¼ 500, for which the highest eigenfrequency is 8034.6 Hz. The limiting sampling rate for stability according to Eq. (38)
is 25 241 Hz, and for the current simulation the sampling rate is chosen as fS¼50 482 Hz. The time series (a) reveals that the
amplitude of vibrations after the strike reaches almost 6 times the thickness, corresponding to a rich sound including pitch-
glides and crashes. Comparing with figures (c)–(d), it is seen that the amplitude of vibrations remains unchanged. However,
because of the increased loss effects, the cascade reaches its peak at about 4500 Hz. A comparison between the time series
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Fig. 6. Plots of a few nondimensional values of coupling coefficients, Γp
p;p;p ¼ Γp

p;p;pðLxLyÞ
3 for some modes of the rectangular plate with simply-supported

edges. (a)–(c) High-order modes with a small modal index k1, showing convergence. (d)–(f) High-order modes (adjacent to top ones) with large modal
indices k1, k2.

Table 2
Nondimensional values of radian eigenfrequencies ωk and coupling coefficients Γp

p;p;pðLxLyÞ
3 for some modes of the rectangular plate with simply-supported

edges. The modes are sorted with respect to increasing eigenfrequencies. NΨ gives the number of modes needed to get the displayed (converged) value for
the coupling coefficients (up to three significant figures). The indices k1, k2 are as in Eq. (44).

Mode label p Mode (k1, k2) ωk ωk=ω1 Γp
p;p;pðLxLyÞ

3 NΨ

1 (1,1) 89.101 1 2.00 , 101 12
20 (3,5) 1240.6 13.9 9.50 , 103 286
72 (5,10) 4283.7 48.1 1.07 , 105 239

336 (1,26) 18 595 208.7 2.50 , 106 25
422 (2,29) 23 303 261.5 5.88 , 106 103
589 (3,34) 32 248 361.9 1.23 , 107 132

M. Ducceschi, C. Touzé / Journal of Sound and Vibration 344 (2015) 313–331 325



(a) and (c) reveals that the high frequency modulations are dissipated almost instantly for the high-loss case, leaving only a
few frequencies in the queue. However, because of the nonlinear effects at the start of the simulation, the sound remains
rich: such a set of parameters may be used to simulate the sound of a gong held firmly at one point by the player. Very
natural pitch-glides effects are prominent in this case. Because of the reduced number of eigenmodes activated, a sensible
choice for this simulation is NΦ ¼ 250, giving a largest eigenfrequency at 4078.3 Hz. The sampling rate is chosen again at
twice as much the limiting frequency for stability, fS¼25 624 Hz. Indicative simulation times may be given as 28 min
per second for (a)–(b) and 4 min per second for (c)–(d), in a fully optimized modal code in Matlab.

Another case of interest is depicted in Fig. 8, showing the case of a soft strike on the plate, and giving rise to a small
cascade of energy with perceptually interesting loss effects. The plate is now hit using Twid ¼ 8 ms, pm¼80 N, and the
damping law is again of the form c¼ 0:004ω0:75þ0:08 kg=m2=s. The time series (a) reveals that these parameters are
sufficient to give rise to nonlinear effects, as the amplitude of vibrations attains 2–3 times the thickness. However, the
cascade reaches its peak at about 1500 Hz, suggesting that only a small number of modes may be employed for the current
simulation. In fact, NΦ ¼ 100 for Fig. 8. The limiting sampling frequency for stability would be in this case f limS ¼ 10 559 Hz,
but in order to resolve accurately all the modes the sampling rate was chosen at fS¼40 kHz. The interesting thing about this
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Fig. 7. Numerical simulations of a rectangular plate with Lx¼0.4 m, Ly¼0.6 m, h¼1.2 mm. Time series of displacement at output point, spectrograms of
velocity at output point, for Twid ¼ 7 ms, pm¼300 N. Damping law: c¼ 0:04ω0:75þ0:08 kg=m2=s. (a), (b) NΦ ¼ 500, NΨ ¼ 60, fS¼50 482 Hz. (c), (d) NΦ ¼ 250,
NΨ ¼ 150, fS¼25 624 Hz.
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Fig. 8. Numerical simulation of a rectangular plate with Lx¼0.4 m, Ly¼0.6 m, h¼1.2 mm, soft strike. (a) Time series of displacement at output point, (b)
spectrograms of velocity at output point. Twid ¼ 8 ms, pm¼80 N, NΦ ¼ 100, NΨ ¼ 150, fS¼40 kHz, c¼ 0:004ω0:75þ0:08 kg=m2=s.
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simulation is that with such a small number of modes a relatively short calculation time is needed: this is (indicatively)
1 min per second in Matlab. This can be viewed as an advantage of the modal approach with respect to other numerical
techniques, namely Finite Differences: for weakly nonlinear vibrations (as in the present case), a few number of modes may
be retained so to achieve faster calculation times. Despite the small number of retained modes, the sound is still surprisingly
rich, as one may appreciate by listening to the sound sample in the companion page.

4. Conclusion

A general strategy for time-integrating nonlinear equations of motions for perfect and imperfect plates based on the von
Kármán model has been derived in this paper. It relies on a modal approach coupled with an ad hoc energy-conserving
scheme. Simulations with up to a thousand modes interacting nonlinearly are possible, and the stability of the scheme is
guaranteed by selecting an appropriate timestep defined by the highest eigenfrequency of the discretized system. The
method is completely general and can be applied to a large number of cases where the nonlinear dynamics is dominating,
and where accuracy is needed together with a reasonable computational burden. The main advantages of the method are
the following:

+ The linear and nonlinear parameters appearing in the modal equations can be calculated with any degree of accuracy
during an offline calculation. For the cases where the modes are known analytically, the values of the linear coefficients
are exact, while the convergence of the nonlinear coefficients is obtained within a reasonable computational time.

+ The generality of the proposed method can be extended to more difficult cases where the modes are not known
analytically: such consideration is quite remarkable considering the diffused misconception according to which modal
methods are only applicable in the few cases where the modes present a closed-form solution. A first example of a
rectangular plate where the in-plane modes are not analytic is treated here by the Rayleigh–Ritz method. Different
techniques may be employed for different cases, for instance finite-element techniques for the calculation of the
nonlinear coefficients, as shown in [30].

+ The stability condition derived from the analysis of the energy-conserving scheme shows that the sampling frequency fS
needs to be larger than πf NΦ

, where f NΦ
refers to the largest eigenfrequency contained in the truncation, hence resulting

in a large timestep enabling faster simulations.
+ A salient feature of the modal approach is the possibility of selecting ad hoc viscous damping laws effortlessly. Such

feature is neglected in a finite element or finite difference context, where a temporal evolution operator describing the
damping law has to be made explicit and global. This feature is a great advantage of the present method, allowing one to
take into account very complex damping mechanisms.

The modal framework has been used here for the sound synthesis of cymbals and gong-like instruments. This example was
chosen because it is a challenging one, with a strongly nonlinear dynamics involving hundreds of modes interacting in a
turbulent manner. Perceptual accuracy is achieved thanks to the refined loss model implemented in the current flexible
scheme. The sound examples have shown the ability of the method to compute very realistic sounds. It has been also shown
how the tuning of the truncation coefficient can be selected in order to speed up the computations without loss in accuracy.

The results presented in this contribution show undoubtedly that the modal method is able to treat the cases of strongly
nonlinear systems, with a huge number of modes interacting together. The authors believe that this should give new
impetus in favour of modal schemes for nonlinear systems: because of its specific advantages – like those highlighted in this
paper – the modal approach offers an attractive alternative to other numerical schemes.
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Appendix A. Energy-conserving modal scheme for imperfect plates

This appendix is devoted to extend the conservative scheme in modal coordinates for the case of an imperfect plate. Let
w0ðxÞ be the static deflection of the imperfect plate at rest, and wðx; tÞ the transverse displacement with respect to the static
position w0, then the von Kármán equations for imperfect plates simply read [34,35]

ρh €wþDΔΔw¼Lðwþw0; FÞþpðx; tÞ%Rðx; tÞ; (A.1a)

ΔΔF ¼ %
Eh
2
L w;wþ2w0ð Þ; (A.1b)
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The presence of an imperfection introduces quadratic nonlinear terms in the equations of motion (A.1). An interesting
strategy for solving out the PDEs without recalculating the eigenmodes for each possible imperfection w0ðxÞ consists in
using the eigenmodes of the perfect plate as functional basis [35]. Within this framework, the continuous energies are found
to have the same expressions as those given in Eqs. (19).

The framework of Section 2.2 is adapted by projecting also the imperfection on the modes of the transverse motion as

w0 xð Þ ¼ Sw
XNΦ

k ¼ 1

ΦkðxÞ
JΦk J

ak: (A.2)

Following the same lines of calculation as for the perfect plate, the modal equations are obtained in the quadratic ðq;ηÞ
formulation as

€qsþω2
s qsþ2ξsωs _qs ¼

SF
ρh

XNΦ

k ¼ 1

XNΨ

l ¼ 1

Esk;l qkþak
# $

ηlþps tð Þ; (A.3a)

ηl ¼ %
Eh

2ζ4l

S2w
SF

XNΦ

m;n
Hl

m;n qmqnþ2qman
# $

: (A.3b)

Using the property Esk;l ¼Hl
k;s, the associated conservative scheme is introduced for the undamped and unforced problem as

δttqs nð Þþω2
s qs nð Þ ¼

SF
ρh

XNΦ

k ¼ 1

XNΨ

l ¼ 1

Hl
k;s qkðnÞþak
# $

μt&ηl nð Þ; (A.4a)

μt%ηl nð Þ ¼ %
Eh

2ζ4l

S2w
SF

XNΦ

i;j ¼ 1

Hl
i;j qiðnÞet%qjðnÞþ2aj μt% qiðnÞ
% &

: (A.4b)

The proof that such a scheme is energy conserving follows the lines of the previous demonstration. The second equation
(A.4b) is multiplied by δtþ . Using the symmetry property of the tensor Hl

i;j together with the following identity on the
discrete operators : δtþ ðμt%qiðnÞÞ ¼ δt&qiðnÞ, one obtains, similar to Eq. (29),

XNΦ

k;s ¼ 1

Hl
k;s qk nð Þþak
# $

δt&qs nð Þ ¼ %
ζ4l SF
EhS2w

μt% δtþηlðnÞ
# $

(A.5)

Then, Eq. (A.4a) is multiplied by ρhδt&qsðnÞ and then summed over the index s. Using (A.5), the same substitutions as in the
previous case can be realized, leading to Eq. (32), from which the discrete energies can be identified as in Eqs. (33).

Appendix B. Mode shapes for the circular plate with free edge

B.1. Transverse modes Φp

The presentation of the results for the eigenproblem of a circular plate follows strictly reference [25]. Note that the
results are given here, for the sake of generality, for the nondimensional problem. The eigenmodes Φ with a free boundary
condition shall satisfy, for all θ and t:

ðΔΔ%ξ4ÞΦ¼ 0; (B.1a)

Φ;rrþνΦ;rþνΦ;θθ ¼ 0 at r¼ 1 (B.1b)

Φ;rrrþΦ;rr%Φ;rþð2%νÞΦ;rθθ%ð3%νÞΦ;θθ ¼ 0 at r¼ 1; (B.1c)

Φðr ¼ 0Þ is bounded; (B.1d)

with ξ4 ¼ω2. The solutions of the previous set are separated in r and θ, and write

Φ0nðr;θÞ ¼ R0nðrÞ for k¼ 0 (B.2a)

Φkn1ðr;θÞ
Φkn2ðr;θÞ

*****¼ RknðrÞ
cos kθ
sin kθ

***** for k40 (B.2b)

with

Rkn rð Þ ¼ κkn Jk ξknr
# $

%
eJ kðξknÞ
eIkðξknÞ

Ik ξknr
# $

" #

(B.3)
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where Jk is the Bessel functions of order k of the first kind, IkðxÞ ¼ JkðixÞ with i¼ ffiffiffiffiffi
%

p 1, and eJ k and eIk are defined as follows:

eJ kðxÞ ¼ x2Jk%2ðxÞþxðν%2kþ1ÞJk%1ðxÞþkðkþ1Þð1%νÞJkðxÞ; (B.4a)

eIkðxÞ ¼ x2Ik%2ðxÞþxðν%2kþ1ÞIk%1ðxÞþkðkþ1Þð1%νÞIkðxÞ: (B.4b)

κ kn is a normalization constant which can be chosen such that
R
ðSÞΦ

2
kn dS¼ 1.

ξkn is the en%th solution of the following equation:

eIkðξÞ ξ
3Jk%3ðξÞþξ2ð4%3kÞJk%2ðξÞþξk kð1þνÞ%2ð ÞJk%1ðξÞþk2ð1%νÞð1þkÞJkðξÞ

h i

%eJ kðξÞ ξ
3Ik%3ðξÞþξ2ð4%3kÞIk%2ðξÞþξk kð1þνÞ%2ð ÞIk%1ðξÞþk2ð1%νÞð1þkÞIkðξÞ

h i
¼ 0: (B.5)

k is found to be the number of nodal radii. Because of the free edge boundary condition, the edge of the plate is not a nodal
circle, and mode Φ10 is a rigid body mode. So, the number n of nodal circles is not equal to en. In fact, for k¼1, n¼ en and for
ka1, n¼ en%1 [25,36]. Numerical solutions for the zeros of Eq. (B.5) give the eigenfrequencies for the transverse problem
since ωkn ¼ ξ2kn.

B.2. In-plane modes Ψs

The boundary conditions for the plate with a free edge correspond to a free boundary for the in-plane displacements.
Expressing these conditions in terms of the Airy stress function F leads to consider, due to the relationship between F and
the in-plane displacements, a clamped edge condition [25,27]. The nondimensional eigenproblem to be solved for the in-
plane modes Ψ thus reads, for all θ and t:

ðΔΔ%ζ4ÞΨ ¼ 0; (B.6a)

Ψ ¼ 0 at r ¼ 1 (B.6b)

Ψ ;r ¼ 0 at r ¼ 1; (B.6c)

Ψ ðr¼ 0Þ is finite: (B.6d)

The solutions of the previous set are separated in r and θ:

Ψ 0mðr;θÞ ¼ S0mðrÞ for l¼ 0 (B.7a)

Ψ lm1ðr;θÞ
Ψ lm2ðr;θÞ

*****¼ SlmðrÞ
cos lθ
sin lθ

***** for l40 (B.7b)

with

Slm rð Þ ¼ λlm Jl ζlmr
# $

%
JlðζlmÞ
IlðζlmÞ

Il ζlmr
# $+ ,

(B.8)

where the ζlm is the m-th solution of the following equation:

Jl%1ðζÞIlðζÞ% Il%1ðζÞJlðζÞ ¼ 0: (B.9)

The normalization constant λlm is generally chosen so that
R
ðSÞΨ

2
lm dS¼ 1. In this case, l;m correspond to the numbers of

nodal radii and circles, respectively.

Appendix C. Modes for rectangular plate with clamped edges

The method described here for computing efficiently the eigenmodes of a rectangular plate with clamped edges has been
derived first in [27,28], where it was shown to be a fast-converging, accurate and stable method up to the 400–500th mode.
The problem is solved using the Rayleigh–Ritz method with appropriate expansion functions. For a generic mode Ψ ðxÞ,
consider then the following expansion:

Ψ ðxÞ ¼
XNΛ

n ¼ 1
anΛnðxÞ:

The functions Λn are written as

ΛnðxÞ ¼ Xn1 ðxÞYn2 ðyÞ; (C.1)
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where

Xn1 xð Þ ¼ cos
n1πx
Lx

' (
þ
15ð1þð%1Þn1 Þ

L4x
x4%

4ð8þ7ð%1Þn1 Þ
L3x

x3þ
6ð3þ2ð%1Þn1 Þ

L2x
x2%1; (C.2)

and similarly for Yn2 ðyÞ
The algebraic eigenvalue problem is written as

Ka¼ζ4Ma; (C.3)

and gives the expansion weights a along with the eigenvalues ζ4. The stiffness and mass matrices for the clamped plate
problem are set up as follows (primes indicate derivatives):

Kði; jÞ ¼ Kðmn; pqÞ

¼
Z Lx

0
X″mðxÞX″pðxÞ dx

Z Ly

0
YnðyÞYqðyÞ dyþ

Z Lx

0
XmðxÞXpðxÞ dx

Z Ly

0
Y″nðyÞY″qðyÞ dyþ2

Z Lx

0
X0
mðxÞX

0
pðxÞ dx

Z Ly

0
Y 0
nðyÞY

0
qðyÞ dy

Mði; jÞ ¼Mðmn; pqÞ ¼
Z Lx

0
XmðxÞXpðxÞ dx

Z Ly

0
YnðyÞYqðyÞ dy

The integrals can be calculated analytically, and are

Z Lx

0
X″mðxÞX″pðxÞ dx¼

720=L3x if m¼ p¼ 0

ðπ4m4%672ð%1Þm%768Þ=ð2L3x Þ if m¼ pa0
0 if m or p¼ 0 and map
%24ð7ð%1Þmþ7ð%1Þpþ8ð%1Þmð%1Þpþ8Þ=L3x otherwise

8
>>>><

>>>>:

Z Lx

0
XmðxÞXpðxÞ dx¼

10Lx=7 if m¼ p¼ 0
67Lx=70%ð%1ÞmLx=35%768Lx=ðπ4m4Þ%672ð%1ÞmLx=ðπ4m4Þ if m¼ pa0
3Lxðð%1Þpþ1Þðπ4p4%1680ÞÞ=ð14π4p4Þ if m¼ 0 and pa0
3Lxðð%1Þmþ1Þðπ4m4%1680ÞÞ=ð14π4m4Þ if p¼ 0 and ma0
%ðLxð11 760ð%1Þmþ11 760ð%1Þp%16π4m4þ13 440ð%1Þmð%1Þpþ
ð%1Þmπ4m4þð%1Þpπ4m4%16ð%1Þmð%1Þpπ4m4þ13 440ÞÞ=ð70π4m4Þ
%ðLxð13 440m4þ11 760ð%1Þmm4þ11 760ð%1Þpm4þ13 440ð%1Þmð%1Þpm4ÞÞ=ð70π4m4p4Þ otherwise

8
>>>>>>>>>>><

>>>>>>>>>>>:

Z Lx

0
X″
mðxÞXpðxÞ dx¼

%120=ð7LÞ if m¼ p¼ 0
%ð768π2m2%47 040ð%1Þmþ35π4m4þ432ð%1Þmπ2m2%53 760Þ=ð70Lxπ2m2Þ if m¼ pa0
%ð60ðð%1Þpþ1Þðπ2p2%42ÞÞ=ð7Lxπ2p2Þ if m¼ 0 and pa0
%ð60ðð%1Þmþ1Þðπ2m2%42ÞÞ=ð7Lxπ2m2Þ if p¼ 0 and ma0
ð24ðm2þp2Þð7ð%1Þmþ7ð%1Þpþ8ð%1Þmð%1Þpþ8ÞÞ=ðLxπ2m2p2Þ
%ðð108ð%1Þmþ108ð%1Þpþ192ð%1Þmð%1Þpþ192ÞÞ=ð35LxÞ otherwise

8
>>>>>>>>><

>>>>>>>>>:

and similarly for the integrals involving the functions Y.

Appendix D. Supplementary data

Supplementary data associated with this paper can be found in the online version at http://dx.doi.org/10.1016/j.jsv.2015.
01.029.
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