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Collision modelling represents an active field of research in musical acoustics. Common
examples of collisions include the hammer-string interaction in the piano, the interaction
of strings with fretboards and fingers, the membrane-wire interaction in the snare drum,
reed-beating effects in wind instruments, and others. At the modelling level, many current
approaches make use of conservative potentials in the form of power-laws, and discretisations
proposed for such models rely in all cases on iterative root-finding routines. Here, a method
based on energy quadratisation of the nonlinear collision potential is proposed. It is shown
that there exist a suitable discretisation of such model that may be resolved in a single
iteration, whilst guaranteeing stability via energy conservation. Applications to the case of
lumped as well as fully distributed systems will be given, using both finite-difference and
modal methods.
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I. INTRODUCTION

Collisions play a key role in the operation of many
musical instruments. The most obvious examples are
the hammer-string1 and mallet-membane interactions2,
but there are many others: fret/string interactions in
instruments such as the guitar3,4; reed-beating effects
in wind instruments5,6; the sitar7 and tanpura8; and
wire/membrane collisions in the snare drum9. Some col-
lisions may be modelled as lumped, and considered to act
only over a very small portion of a system (e.g. a piano
hammer). Others are distributed in spatial extent, such
as the wire-membrane interaction. Furthermore, some
of these collisions involve obstacles that are conveniently
modelled as rigid (e.g. a fretboard), while in others the
effects of deformation are critical. The collision force is
strongly nonlinear and cannot be approximated through
linearisation.

At the numerical level, various approaches are avail-
able. Unilaterally-constrained dynamics may be used to
model the collision of a vibrating object, such as a string,
against a rigid, immovable obstacle7,10,11; non-smooth
dynamical representations have also been employed for
the same purpose12,13. In contrast, when the colliding ob-
jects are deformable, a common approach is to model the
interaction via a suitable potential function: under per-
fectly elastic conditions, the collision energy is exchanged
whilst remaining conserved overall14. The potential func-
tion depends on the amount of deformation of the collid-
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ing objects, often in power-law fashion15. Such model
may then be extended to include losses that may take
place during the collision16. The possibility of modelling
a collision via energy methods is particularly attractive
from a numerical design perspective, since this passiv-
ity property can be used as a condition on stability17.
Thus, such potential-based methods have been extended
to cases involving rigid obstacles, though the interpene-
tration is now interpreted as a penalty8,17. At the nu-
merical level, energy conservation may be achieved via
schemes involving the solution of a system of nonlin-
ear equations. Though existence and uniqueness of the
underlying solutions have been proven8,17, the resulting
numerical schemes can only be approached via iterative
root-finding routines such as e.g. Newton-Raphson. Fur-
thermore, for collisions taking place in systems of finite
spatial extent, approaches based on modal decomposi-
tions are impaired due to the implicit character of the
update equations18, and efficient solutions are only avail-
able in the case of linear barrier force19.

In this work, a method is presented, such that the re-
sulting numerical schemes maintain a notion of passivity,
via energy conservation, while avoiding iterative meth-
ods; there is at most the solution of one linear system per
update. On top of the reduction in computational cost,
in this case existence and uniqueness of solutions follow
in an obvious manner. Such schemes are based on the
quadratisation of the collision potential energy, through
the introduction of an auxiliary function treated as a new
additional state variable. Quadratisation strategies al-
lowing for explicit numerical updates appeared first in
the context of Port-Hamiltonian systems,20,21, for invert-
ible potentials. The introduction of an additional state

22 April 2021 Linearly-implicit collision schemes 1

http://dx.doi.org(DOI number)
mailto:mduccesh@ed.ac.uk


variable was proposed within the context of the Invari-
ant Energy Quadratisation method22. In this work, the
case of a non-invertible potential is considered. For dis-
tributed collisions, the proposed schemes generalise nat-
urally to the case of modal-based discretisations, yielding
an efficient update scheme.

The article is organised as follows: section II in-
troduces the proposed schemes for the simple case of
the mass-barrier collision. In this section, the proposed
scheme is compared against benchmark schemes bor-
rowed from the literature8,17. Section III presents the
case of the hammer-string interaction, using a finite dif-
ference discretisation on the spatial operators. Section
IV extends the previous example to a fully distributed
barrier, and by making use of both finite difference and
modal schemes. Finally sections V and VI present appli-
cations of the proposed schemes for the cases of the snare
drum and the tromba marina.

II. COMPARATIVE STUDY: THE MASS-BARRIER COLLI-

SION

In this section, the case of a point mass colliding
against a rigid barrier is presented. This section intro-
duces as well the temporal difference operators that will
be used throughout the text.

The mass-barrier collision, though not a musical sys-
tem per se, serves as an introductory test case, from
which the properties of the numerical schemes and their
main operational principles can be understood. The mo-
tion is expressed through an ordinary differential equa-
tion (ODE) of the following form:

Mü = −Ku−∇ηφ(η) with η = u− z (1)

Here, M represents the mass of the particle, K is the
stiffness coefficient of the linear restoring force, u = u(t)
is the displacement measured from the rest position, and
dependent on time t ≥ 0. η represents the distance be-
tween the mass and a barrier, located at z. Time differ-
entiation is here indicated with dots, and the gradient is
taken with respect to η, as suggested by the gradient sub-
script. Here, linear stiffness has been separated out from
the general potential, as it may often be advantageous to
approach discretisation through such a splitting. Equa-
tion (1) must be complemented by two initial conditions
u(0) = u0, u̇(0) = v0. From these, one has η0 = u0 − z.
Finally, φ = φ(η) is a general nonlinear potential, that
for collisions takes the form

φ(η) =
Kη

α+ 1
(η/2 + |η|/2)

α+1
(2)

where Kη is a stiffness parameter, and where α ≥ 1.
Using the chain rule, when the barrier height z is

constant, and assuming η 6= 0, u̇ 6= 0, one may write (1)
as

Mü = −Ku− φ̇/u̇ (3)

Upon multiplication of (3) by u̇, one arrives at

Ḣ = 0 where H(t) =
Mu̇2

2
+
Ku2

2
+ φ (4)

and thus energy remains constant:

H(t) = H0 =
M

2
v20 +

K

2
u20 + φ(η0) ∀t ≥ 0

Furthermore, boundedness of the solution follows, since
φ(u) ≥ 0. Under this condition, from (4),

0 ≤ |u| ≤
√

2H0/K, 0 ≤ |u̇| ≤
√

2H0/M (5)

and thus u and u̇ are bounded in terms of the initial
energy H0. As will be seen shortly, an iterative, conser-
vative scheme may be derived as a discretisation of (3).

Following8, the same motion may be described using
Hamilton’s equations:

Mu̇ = p, ṗ = −∇uV(u) (6)

System (6) conserves the Hamiltonian H = T + V. Here
T = p2/2M is the kinetic energy, V = Ku2/2 + φ(u)
is the potential energy, and p is the momentum of the
particle. This system may also be discretised directly, as
will be seen shortly.

A. Quadratisation

Non-iterative time discretisations follow from a
change of variables applied to the potential function in
(1). Consider a quadratisation of the potential function
φ, as

φ =
ψ2

2
(7)

One may substitute such form in the expression for the
Hamiltonian (4), obtaining

H(t) =
Mu̇2

2
+
Ku2

2
+
ψ2

2
(8)

Notice that, under the condition of non-negativity of φ,
one may always perform such a substitution. This form of
the Hamiltonian includes quadratic terms only. Perform-
ing time differentiation of (8), one obtains the following
equation of motion

Mü = −Ku− ψ∇ηψ(η) (9)

Formally, equations (1) and (9) are entirely equiva-
lent. They yield the same solution u(t), as well as the
same bounds on the growth of such solution and its time
derivative. Notice that bounds (5) hold in this case too.
Looking towards discrete time implementation (see Sec-
tion II C 3), it is useful to rewrite (9) as

Mü = −Ku− ψg ψ̇ = gu̇ g = ∇ηψ (10)

Quadratisation strategies appeared in various other
contexts, such as e.g. Port-Hamiltonian systems20,21,
fluid dynamics23, and they form the core of the Invariant
Energy Quadratisation method22, which is similar to the
method proposed here, in that an extra auxiliary state
variable is defined.
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B. Temporal Finite Difference Operators

The finite difference method is employed for the sim-
ulation of the nonlinear equations. Thus, the continuous
function u(t) is approximated at the time nk by the time
series un, where n ∈ N0, and where k is the time step
(and 1/k is the sample rate.) The basic operators in dis-
crete time are the identity and shift operators, defined as

1un = un, et+u
n = un+1, et−u

n = un−1 (11)

From these, one may define the time difference operators,
all approximating the first time derivative, as

δt+u
n =

(et+ − 1)un

k
=
du

dt
+O(k) (12a)

δt−u
n =

(1− et−)un

k
=
du

dt
+O(k) (12b)

δt·u
n =

(et+ − et−)un

2k
=
du

dt
+O(k2) (12c)

An approximation to the second time derivative is con-
structed from the above as

δttu
n = δt+δt−u

n =
d2u

dt2
+O(k2) (13)

Averaging operators are also used throughout the text,
and are

µt+u
n =

(et+ + 1)un

2
= u(t) +O(k) (14a)

µt−u
n =

(1 + et−)un

2
= u(t) +O(k) (14b)

Analogous definitions of the difference and averaging op-
erators hold for time series defined at interleaved time
instants n − 1/2. Finally, an identity used throughout
the text is given here as

µt+ = (k/2)δt+ + 1 (15)

C. Conservative Schemes

The finite difference formalism introduced in the pre-
vious section is now used to construct three conservative
schemes. The first scheme is taken from Chatziioannou
and van Walstijn8: this is a method making use of a dis-
cretisation of Hamilton’s equations given in first order
form, and will be labelled IT-1. The second scheme is
taken from Bilbao et al.17, discretising directly (1), and
labelled IT-2. Finally, the proposed scheme follows from
a discretisation of the quadratised equations (8), and will
be labelled N-IT.

1. Iterative Scheme IT-1

Following Chatziioannou and van Walstijn8, one may
discretise Hamilton’s equations (6) as

Mδt+u
n−1/2 = µt+p

n−1/2 (16a)

δt+p
n−1/2 = −δt+V(un−1/2)/δt+u

n−1/2 (16b)

Here, un−1/2 and pn−1/2 are known from the previous
time step. Using then (15) on the right-hand side of
(16a), and using (16b), one may arrive at a nonlinear
algebraic equation to be solved at each time step, in the
form F (s) = 0, where s = un+1/2 − un−1/2 and where

F (s) = (c/s)(V(a+ s)− V(a)) + s− b (17)

a = un−1/2, b = kpn−1/2/M , c = k2/2M . Energy con-
servation arises naturally from (16), as

δt+h
n−1/2 = 0

where

hn−1/2 = (pn−1/2)2/2M + V(un−1/2) (18)

Notice that this discrete Hamiltonian is non-negative by
definition, reflecting the implicit nature of the discretisa-
tion of the linear part of (16). Existence and uniqueness
of the solution may be shown for (16), and the resulting
update equation (17) may be approached via a suitable
root-finding algorithm, such as Newton-Raphson8.

2. Iterative Scheme IT-2

A suitable discretisation of (3) is given in Bilbao et
al.17 as

Mδttu
n = −Kun − δt+(µt−φ

n)

δt·un
(19)

where

µt−φ
n =

φ(un) + φ(un−1)

2
At each time step, the update may be written as a non-
linear function in the unknown s = un+1 − un−1

G(s) = (c/s)(φ(a+ s)− φ(a)) + s− b (20)

where here a = un−1, b = 2M(δt−u
n)/k − Kun, c =

k2/M . One then solves G(s) = 0 using a nonlinear root
finder such as e.g. Newton-Raphson.

This scheme conserves a discrete Hamiltonian. To
see this, it is enough to multiply (19) by δt·u, to get

δt+h
n−1/2 = 0

where the discrete Hamiltonian has the form

hn−1/2 =
M(δt−u

n)2

2
+
Kunun−1

2
+ µt−φ

n (21)

The discrete Hamiltonian is not necessarily non-negative.
One may easily show that a condition for non-negativity
of the total energy is obtained for24

k < 2
√
M/K (22)

This serves as a necessary and sufficient condition for
stability for scheme (19), and is independent of the state
u and of the particular form of the nonlinear function
φ, provided it is non-negative. Under such condition, a
discrete counterpart to the bounds (5) may be derived as

0 ≤ |µt−u| ≤
√

2h/K, 0 ≤ |δt−u| ≤
√

2h/M (23)

Existence and uniqueness may be proven for this scheme
as well17.
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3. Non-Iterative Scheme N-IT

Turning now to (9), and the form given in (10), a
particular discretisation is given by the following system

Mδttu
n = −Kun − (µt+ψ

n−1/2)gn (24a)

δt+ψ
n−1/2 = gnδt·u

n (24b)

A distinctive feature of this scheme, is that now ψ is
treated as an independent time series. In practice, ψ is
calculated at interleaved time instants, i.e. ψ = ψn−1/2

and is not an implicit function of un. Both u and ψ must
be updated at each time step.

With this in mind, scheme (24) has a completely ex-
plicit form. Furthermore, inserting (24b) into (24a), and
multiplying by δt·u, leads to a discrete energy balance:

δt+h
n−1/2 = 0

The discrete Hamiltonian has the form

hn−1/2 =
M(δt−u

n)2

2
+
Kunun−1

2
+

(
ψn−1/2

)2
2

(25)

It is immediate to verify that the nonlinear potential en-
ergy is non-negative, and thus stability condition (22)
and bounds (23) hold in this case too.

One important aspect pertains the choice of the ex-
plicit gradient gn. Previous preliminary works employed
the following form

gn =

{ √
Kη(α/2 + 1/2)(ηn)α−1 if ηn ≥ 0(26a)

0 if ηn < 0(26b)

However, it was observed that some spurious oscillations
are obtained under such choice27–29. A better approxi-
mation, employed in the remainder of this work, is given
by

gn =


κ
√
Kη(α/2 + 1/2)(ηn)α−1 if ηn ≥ 0(27a)

−2
ψn−1/2

η? − ηn−1
if ηn < 0(27b)

where κ = 1 if ψn−1/2 ≥ 0, and κ = −1 other-
wise. Once gn is computed, one must also check that
gnηn−1 < 4ψn−1/2. If this condition is violated, then gn

is set to zero. This procedure ensures that the collision
force is directed outwardly. Furthermore, η? = u? − z is
the update of the system in the absence of the collision
potential, i.e.

u? = 2un − un−1 − k2Kun/M

The particular form for (27b) can be derived by consid-
ering an implicit realisation for g, as

gimp = 2
ψn+1/2 − ψn−1/2

ηn+1 − ηn−1

In the event of no collision at n+ 1/2, then gimp reduces

to (27b), since ψn+1/2 = 0, and since un+1 would be
obtained as the solution of the system for zero collision
force, as per (28). Notice as well that g in (27) is given
entirely from previous values of the time series u, ψ, mak-
ing the scheme fully explicit.

Existence and uniqueness of the numerical solution,
regardless of the particular form of gn follow immediately,
as the system is solved by simple division.

D. Numerical Experiments

As a first experiment, consider Figure 1. In the fig-
ure, the three schemes are compared against each other,
for a barrier of increasing stiffness. It can be appreciated
that the schemes return consistent solutions: as the bar-
rier stiffness is increased, the interpenetration becomes
smaller. The numerical energy is conserved to the order
of machine accuracy for all the three schemes. Notice as
well that, as the stiffness of the barrier is increased, more
iterations of the Newton-Rapshon algorithm are needed
for the iterative schemes, while the computational cost
of N-IT remains fixed. This is an important aspect in
view of any real-time implementation requiring a precise
allocation of computing resources. In fact, while it is
possible to estimate the upper bound on the number of
iterations required for Newton-Raphson25, the iterative
routine may be affected by poor convergence, or insta-
bility in certain cases25,26 if for instance the initial guess
is not carefully estimated, or the if value of the barrier
stiffness is too large.

The experiment in Figure 2 reports the convergence
of the numerical schemes, computed against a reference
analytic solution for a barrier with linear restoring force.
Second-order accuracy is maintaned for lower stiffness
values. However, for values of Kη such that

√
Kη/M k >

1, the schemes become first-order accurate, as proven by
Taylor-expanding the schemes about tn = kn.

III. COMPARATIVE STUDY: THE HAMMER-STRING

COLLISION

As a first example of a collision typical of musical
instruments, the hammer-string collision is investigated
here. The interpenetration in this case may be inter-
preted as the compression experienced by the hammer
felt during contact with the string. Many works have
employed the power law (2) as a model for this case,
though not all include a conservative discretisation of the
resulting dynamics1,30,31.

In a basic configuration, the system may be described
by the following coupled differential equations

ρ∂2t u = T0∂
2
xu+ δ(x− xc)∇ηφ(η) (28a)

MÜ(t) = −∇ηφ(η) (28b)

Here, u(x, t) is the displacement of the string, U is the
displacement of the hammer, and η(t) = U(t) − u(xc, t)
is the hammer felt compression. Partial derivatives with
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FIG. 1. Mass-Barrier Collision. In this experiment, M = 10

g, K = 3.95 · 103 N/m (giving a linear eigenfrequency of 100

Hz). The mass is initialised with amplitude u0 = −0.01 m

and velocity v0 = 1.5 m/s. The nonlinear exponent is α =

1.3, and the barrier stiffness for each column in the figure

is given on top. The barrier height is z = 0. The sample

rate is fs = 44.1 kHz. For all figures, the solid black line

corresponds to N-IT, the dashed grey line to the IT-2 and the

dashed black line to IT-1. The four rows, from top to bottom,

give the displacement, the energy error ε = hn−1/2/h1/2 − 1,

the number of iterations for the Newton-Rapshon, for the

two iterative schemes, with a tolerance threshold τ = 10−14,

and the collision force for N-IT, computed as gµt+ψ. Matlab

sample code is available at the companion webpage32.

respect to t and x are written as ∂t and ∂x, respectively.
ρ is the string’s linear density, T0 the applied tension,
and M is the mass of the hammer. xc is the hammer’s
strike location along the string, and the spatial extent of
the hammer contact is modelled by a simple Dirac delta
distribution δ(x−xc). The function φ is the same as (2).

The string is assumed initially at rest, and is fixed
at the two ends, i.e. u(0, t) = u(L, t) = 0 ∀t, where it
was assumed that x ∈ [0, L], with L being the string’s
length. The hammer has initial displacement U0 and
initial velocity V0.

System (28) is probably insufficient as a musical
model as such. It is lacking several important features
such as stiffness33 and losses34, and perhaps a nonlin-
earity inherent to the string’s geometrical stretching (see
e.g. Bilbao35, as well as Morse and Ingard36, Chapter
14), though all such features may be added into the model
without substantial changes to the template schemes pre-
sented here. For the purpose of illustration, they are
therefore neglected at this stage, and one may refer to
the case study on the tromba marina given in Section VI
for a working example of a complete system.

FIG. 2. Convergence Plots. The error for the three schemes is

computed as En = u(tn)−un, where u(tn) is the analytic so-

lution at time tn = kn, assumed to be after collision. For the

case of a free particle colliding against a linear barrier (α = 1,

K = 0, z = 0), u(tn) = −(tn + u0/v0 − π
√
M/Kη)v0, where

the mass is assumed to collide from below, and where v0 > 0,

u0 < 0. For all panels figures, N-IT is solid black line, IT-1

is dashed black, and IT-2 is dashed grey. Dashed lines with

slope 1 and 2 are also given. The mass is M = 10 g. The bar-

rier stiffness Kη is given in each panel. The numerical initial

conditions are given as u0 = −v0k (floor(−u0/(v0k)) + 0.5),

u1 = v0k + u0

System (28) is conservative, with Hamiltonian given
by

H(t) =
ρ

2
‖∂tu‖2 +

T0
2
‖∂xu‖2 + φ (29)

where the L2 norm notation is used, see e.g.17

Quadratisation of the Hamiltonian may be per-
formed in the same fashion as (8), yielding

H(t) =
ρ

2
‖∂tu‖2 +

T0
2
‖∂xu‖2 +

ψ2

2
(30)

where again ψ2 = 2φ. The associated equations of mo-
tion read

ρ∂2t u(x, t) = T0∂
2
xu(x, t) + δ(x− xc)(ψ∇ηψ) (31a)

MÜ(t) = −ψ∇ηψ (31b)

A. Spatial Finite Difference Operators

Discrete realisations of both (28) and (31) are given
here in terms of appropriate finite difference schemes.
The temporal finite difference operators and notation are
as given in Section II B. Here, because of the distributed
character of the string, it is convenient to introduce a
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matrix-vector formalism for the spatial difference oper-
ators. Thus, the string is divided into N subintervals
by means of N + 1 grid points including the end points.
Each subinteval is of length h, the grid spacing. The dis-
placement u(x, t) is mapped onto the grid function unm,
where n is the time step, and m is the grid index.

In a vector notation, one may then denote the grid
function as un ∈ RN−1, where the dimensionality reflects
the fact that, under fixed end conditions, the end points
need not be stored or updated. Spatial difference opera-
tors may then be realised as matrices. The first difference
operator is given as

Du = 1/h ([uᵀ, 0]ᵀ − [0,uᵀ]ᵀ) (32)

Thus, D is a N × (N −1) rectangular matrix. From this,
the second difference operator is constructed simply as

D(2) = −DᵀD (33)

yielding a square (N − 1)× (N − 1) matrix.
The impact spatial distribution may as well be given

as a vector. Hence δ(x − xc) → r ∈ RN−1. Denoting
mh = floor(xc/h), ν = xc/h − mh, one may set rmh

=
(1−ν)/h, rmh+1 = ν/h, thus effectively employing linear
interpolation24.

B. Numerical Schemes

Two finite difference schemes are given here for the
solutions of (28) and (31).

1. Iterative Scheme IT-2

A discretisation of (28) follows immediately from this
formalism, as17

ρδttu
n = T0D

(2)un + r(δt+µt−φ
n)/(δt·η

n) (34a)

MδttU
n = −(δt+µt−φ

n)/(δt·η
n) (34b)

ηn = Un − hrᵀun (34c)

Here, the discrete Hamiltonian is

h =
ρh

2
(δt−u)ᵀ(δt−u) +

T0h

2
(Det−u)

ᵀ
(Du) + µt−φ

which is clearly a discrete counterpart of (29). Whilst the
nonlinear potential energy is non-negative, the linear part
of the discrete Hamiltonian is non-negative only under
the following CFL condition24,37

h ≥
√
T0/ρ k (35)

Non-negativity of the Hamiltonian overall allows to de-
rive a bound on the growth of the norms of the grid
functions, thus effectively ensuring stability.

In order to solve (34), one first computes the update
of the interpenetration η, by multiplying (34a) by hrᵀ

and subtracting (34b), thus effectively projecting the dy-
namics onto the collision point. This results in an implicit
scalar equation of the same form as (20), i.e. G(s) = 0,

where here s = ηn+1 − ηn−1, a = ηn−1, b = 2ηn −
2ηn−1 − T0k2h/ρrᵀD(2)un, c = k2h/ρrᵀr + k2/M . Exis-
tence and uniqueness of this nonlinear algebraic equation
are proven using the same arguments as before8,17. Once
the interpenetration is known, one may update (34a) and
(34b) explicitly.

2. Non-Iterative Scheme N-IT

System (31) may be approximated by the following
scheme

ρδttu
n = T0D

(2)un + r(µt+ψ
n−1/2)gn (36a)

MδttU
n = −(µt+ψ

n−1/2)gn (36b)

δt+ψ
n−1/2 = gnδt·η

n (36c)

ηn = Un − hrᵀun (36d)

Here, at each time step, one must solve for the string
displacement u, the hammer displacement U as well as
the auxiliary function ψ. The explicit gradient gn can be
taken to have the same form as (27). This scheme has
an associated discrete Hamiltonian of the form

h =
ρh

2
(δt−u)ᵀ(δt−u) +

T0h

2
(Det−u)

ᵀ
(Du) +

ψ2

2

thus effectively discretising (30). The same arguments on
stability as IT-2 apply here, i.e. the nonlinear energy is
clearly non-negative, and for stability the CFL condition
(35) is a necessary and sufficient condition.

A solution to (36) may be found by using identity
(15) in both (36a) and (36b), and then expressing the
time difference of ψ using (36c), so to effectively reduce
the two equations to a linear system. The system is writ-
ten as[

1 + k2g2h
4ρ rrᵀ −k

2g2

4ρ r

−k
2g2h
4M rᵀ 1 + k2g2

4M

][
un+1

Un+1

]
=

[
b1 + k2a

ρ r

b2 − k2a
M

]
(37)

where b1 = 2un − un−1 + (T0k
2/ρ)D(2)un, b2 = 2Un −

Un−1 and a = −(g2/4)ηn−1 + gψn−1/2. This linear sys-
tem may be solved block-wise. Notice in particular that
the matrix yields itself to a fast inversion since it is a
rank-1 perturbation of the identity matrix38. However,
efficient inversion techniques of system (37) will not be
explored in this article.

Once (37) is solved, one may compute ηn+1 via (36d)
and then update ψ via (36c).

C. Numerical Experiments

As a first illustrative example, consider Figure 3:
here, the snapshots of IT-2 and N-IT are plotted. The
hammer here has a high enough stiffness to serve as a
test case.

The same dynamics may be represented in terms of
time series at one output point, rather than as snaph-
sots. This is done in Figure 4. It is seen that, for lower
values of the hammer stiffness, the solutions of the two
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FIG. 3. Snapshots of the hammer-string collision, at times

indicated. In this experiment, M = 10 g, α = 1.3, Kη = 1012.

The hammer is initialised with initial displacement U0 = −1

mm and velocity V0 = 0.5 m/s. The string has ρ = 6.3 g/m,

tension T0 = 100 N, length L = 0.7 m. In the plots, the

solution of the iterative scheme IT-2 is shifted up by 1 mm,

for clarity. Matlab sample code is available at the companion

webpage32.

schemes are perfectly superimposed. As the stiffness is
increased, some small differences are noticed, though the
two schemes converge to the same solution in the limit of
high sample rate. Energy is again conserved to the order
of machine accuracy during collision.

IV. COMPARATIVE STUDY: THE STRING-FRETBOARD

COLLISION

When collisions are distributed (i.e. taking place
across a spatially extended portion of a system), it may
be convenient to think of a density collision potential.
Here, collisions of the string against an immovable, dis-
tributed obstacle are considered. One then has z = z(x),
and η(x, t) = z(x) − u(x, t). The equation of motion for
the string may then be written as

ρ∂2t u(x, t) = T0∂
2
xu(x, t) +∇ηφ(η) (38)

where now φ has dimension of J/m (i.e. it is a potential
density.) The associated Hamiltonian now reads

H(t) =
ρ

2
‖∂tu‖2 +

T0
2
‖∂xu‖2 + ‖

√
φ‖2 (39)

which is a distributed generalisation of (29). This form of
the Hamiltonian lends itself naturally to quadratisation.
Using again ψ2 = 2φ, one gets

H(t) =
ρ

2
‖∂tu‖2 +

T0
2
‖∂xu‖2 +

‖ψ‖2

2
(40)

with associated equation of motion

ρ∂2t u(x, t) = T0∂
2
xu(x, t) + ψ∇ηψ(η) (41)

FIG. 4. Hammer-String collision: String’s output displace-

ment. Output is recorded as µt−u
n
mo, where mo is the output

grid point. For all panels, the solid black line is the output of

N-IT; the grey dashed line is the output of IT-2. Output is

recorded on the string at xo = 0.68L. The hammer has mass

M = 10 g, and α = 1.3. (a): Kη = 107, fs = 44100 Hz. (b):

Kη = 1010, fs = 44100 Hz. (c): Kη = 1012, fs = 44100 Hz.

(d): Kη = 1012, fs = 5 · 44100 Hz. (e): energy error for panel

(a), where ε = hn−1/2/h1/2 − 1.

A. Numerical Schemes

In this section, two applications of the non-iterative
scheme are presented: one making use of a time-space
finite difference scheme, and one making use of a modal
projection for the spatial part. Iterative conservative fi-
nite difference schemes for the string in contact with a
distributed barrier have been employed17, based on the
model (38), and extended to the case of frets in a full
model of guitar strings4. Modal schemes in the context
of collision dynamics have been successfully presented in
other works: an implicit modal update was used in13,
where the collision force is resolved at each time step by
employing a spatial grid, thus effectively employing a fi-
nite difference formulation; the special case α = 1 was
given in19. Here, it will shown that N-IT yields an effi-
cient modal resolution that may be applied directly, for
all values of the barrier exponent α.

1. Non-iterative Finite Difference Scheme N-IT(FD)

This scheme is a generalisation of (36). In order to
account for a potential density, one may think of the
barrier as being composed of Nb discrete points. For a
continuous barrier (such as the backboard of a fretless
instrument), one may assume that the barrier points are
located at the string’s grid points, in which case Nb =
N−1. For other kinds of barrier, one may need to specify
points in between the string’s grid points (e.g. for fretted
instruments). In either case, one may map ψ(x, t) onto
a vector ψn−1/2 ∈ RNb . The density distribution can
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be thought of as an (N − 1) × Nb sparse matrix R. In
practice,

R = [r1, r2, ...rNb
] (42)

where ri ∈ RN−1 is the interpolated sparse density vector
of the ith barrier point. It is convenient, formally, to
introduce a diagonal matrix containing all the explicit
gradients gni , i ∈ [1, Nb]. Hence, G = diag(gni ). Then,
define T = RG.

With this notation, a finite difference scheme dis-
cretising (41) is

ρδttu
n = T0D

(2)un + T(µt+ψ
n−1/2) (43a)

δt+ψ
n−1/2 = Gδt·η

n (43b)

ηn = b− hRᵀun (43c)

The discrete Hamiltonian in this case is

h =
ρh

2
(δt−u)ᵀ(δt−u) +

T0h

2
(Det−u)

ᵀ
(Du) +

ψᵀψ

2

which clearly discretises (40).
Proceeding in a similar manner as before, one may

express this system as(
1 +

k2h

4ρ
TTᵀ

)
un+1 = b +

k2

ρ
Ta (44)

where a = (h/4)Tᵀun−1 + ψn−1/2, b = 2un − un−1 +
T0k

2/ρD(2)un. The update matrix in (44) is a rank-Nb
perturbation of the identity matrix, though it is typically
a perturbation of much smaller rank, equal to the number
of points colliding at the time step n for which gi 6= 0 (in
general, just a fraction of the total points.) Efficient in-
version strategies such as the Woodbury identity39 may
be employed here. Note that, when the barrier points
are collocated at the grid locations, the update matrix is
in fact diagonal, and the scheme is fully explicit. Once
un+1 is known, one may update ψ using (43b). Note
that, when the barrier points are collocated at the finite
difference grid locations, the update matrix is in fact di-
agonal, and the scheme is fully explicit.

2. Non-iterative Modal Scheme N-IT(Modal)

A suitable modal expansion for the string’s displace-
ment under fixed conditions is given by

u(x, t) = Xᵀ(x)q(t), Xm(x) = sin(mπx/L) (45)

where m ∈ [1, Nm] and Nm is the total number of modes.
In order to account for an appropriate density of barrier
points, the vector d contains the spatial distributions,
such as e.g. delta functions. Thus

d = [δ(x− x1), δ(x− x2), ..., δ(x− xNb
)]ᵀ (46)

where Nb as before is the total number of barrier points.
Thus, d is of length Nb. Then, modal projection is per-
formed, by means of the L2 inner product denoted here
for two square integrable functions f, g as

〈f, g〉 =

∫ L

0

fgdx (47)

Thus, the projected modal equations for (41) become

ρ 〈X,Xᵀ〉 ∂2t q = T0 〈X, (X′′)ᵀ〉q + 〈X,dᵀ〉ψ∇ηψ

Owing to modal orthogonality, the matrix 〈X,Xᵀ〉 is the
identity matrix times the norm of the modes, which in
this case is the same for all the modes, i.e. ‖Xm‖2 =
L/2 ∀m. Similarly, 〈X, (X′′)ᵀ〉 = −L/2Λ2, where Λ is a
diagonal matrix with diagonal elements Λm,m = mπ/L.
The matrix 〈X,dᵀ〉 = R is a Nm × Nb a dense matrix
containing the projections of all the modes at each barrier
point, columnwise. As before, define T = RG. Using as
finite difference approximation on the time operators, one
gets the following modal system

ρδttq
n = −T0Λ2qn + (2/L)T(µt+ψ

n−1/2) (48a)

δt+ψ
n−1/2 = Gδt·η

n (48b)

ηn = b−Rᵀqn (48c)

with modal discrete Hamiltonian given by

h =
ρL

4
(δt−q)ᵀ(δt−q) +

T0L

4
(Λet−q)ᵀΛq +

ψᵀψ

2

Inspection of the Hamiltonian allows to derive a stability
condition, which in this case reads

Nm ≤
2L

πk

√
ρ

T0
(49)

The modal update is(
1 +

k2

2ρL
TTᵀ

)
qn+1 = b +

2k2

ρL
Ta (50)

where here a = (1/4)Tᵀqn−1+ψn−1/2, b = 2qn−qn−1−
(k2T0/ρ)Λ2qn. Hence, the modal update has the same
form as (44), except now the matrix T is dense.

B. Numerical Experiments

Snapshots of the numerical outcome of the schemes
are presented in Figures 5 and Figure 6. In both cases,
the modal scheme and the finite difference scheme re-
turn consistent solutions, even after a large number of
collisions. Notice that, although the barrier parameters
are selected so to simulate a hard collision, the schemes
are perfectly stable and compute the solution solving one
single linear system per update. In Figure 5, a bent ob-
stacle similar to the bridge of instruments such as the
tanpura is obtained as a quadratic function of x. In Fig-
ure 6, frets are placed at intermediate string grid points
using linear interpolation.

V. CASE STUDY: THE WIRE-MEMBRANE COLLISION

Power-law contact forces may be applied to the case
of collisions between moving distributed objects, see
e.g.40. An interesting case is represented by the wire-
membrane interaction in the snare drum. In this instru-
ment, a set of wires collide against the snare membrane.
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FIG. 5. Snapshots of string-backboard collision. The string

parameters are the same as Figure 3. The barrier is described

by z(x) = −0.02x2 − 0.001x − 0.0001, and has K(nl) = 1012,

α = 1.2. Both N-IT(FD) and N-IT(Modal) are initialised

in the first mode of vibration, for zero initial velocity, with

peak modal amplitude 3 mm. N-IT(FD) is solid black line, N-

IT(Modal) is grey dashed line. Output is averaged as µt−u
n.

FIG. 6. Snapshots of string-frets collision. The parameters

for the string and barrier are the same as Figure 5, but the

barrier is now a fretted backboard with twelve frets spaced

by one semitone each.

The system is activated after the batter membrane, at
the opposite end of the drum, is set into motion by the
player. This produces a vibration of the air cavity which
in turn sets the snare membrane into vibration. Compu-
tationally, this is a complex system, since various subsys-
tems of different wave speeds are coupled in a nonlinear
manner. A full model of this system was first offered by
Bilbao9, where the wire-membrane collisions are mod-
elled in a semi-conservative manner. Bilbao et al. subse-

quently used the iterative model to obtain conservation
of the discrete energy to machine accuracy17. Here, as a
test case, only the wire-membrane interaction is shown,
using a non-iterative finite difference scheme.

In this basic configuration, the wire-membrane sys-
tem may be described by two coupled partial differential
equations

ρm∂
2
tw = Tm∆w − ξ(x, y)ψ∇ηψ (51a)

ρs∂
2
t u = Ts∂

2
χu+ ψ∇ηψ (51b)

η = 〈w, ξ〉 − u (51c)

Here, w = w(x, y, t) is the displacement of the membrane,
u = u(χ, t) is the displacement of the wire, and ξ(x, y) is
the operator projecting the linear domain of the wire onto
the membrane. The symbol ∆ indicates the Laplacian.
The inner product definition is here extended to the two-
dimensional domain of occupied by the membrane. The
index m here stands for membrane, denoting the surface
density and the tension per unit length in (51a). The
index s is used for string, to denote the linear density
and the tension in (51b).

A. Numerical Experiments

Implementation details for system (51) are not given
here. In terms of the membrane, one may use a 2D
cartesian grid over which the differential operators are
discretised. This leads to a staircase representation of
the circular boundary, but it has overall numerous bene-
ficial effects in terms of numerical dispersion and ease of
implementation compared to e.g. a polar difference grid,
see e.g. Bilbao24 (Chapter 11). The collision force may
be resolved once a suitable interpolation is implemented,
to switch between the membrane and string grids. This
can be done with a suitable 2D linear interpolator, as
the one given by Bilbao24 (Chapter 10). A non-iterative
scheme for the collision force can then be implemented
easily from the templates given above.

As an illustration, consider Figure 7. Here, the wire
is initialised in its first mode of vibration, and released.
The collision with the membrane induces a set of waves
propagating in the membrane. The system can be up-
dated at each time step by solving one single sparse linear
system, as a perturbation of rank lower than the wire’s
grid points.

VI. CASE STUDY: THE TROMBA MARINA

The Tromba Marina is a medieval bowed monochord
instrument that produces a trumpet-like sound when
played (hence the name tromba, meaning trumpet in Ital-
ian) (see Figure 8). This characteristic sound arises from
the fact that the string rests on a loose shoe-shaped
bridge that collides with the instrument body as the
string vibrates (see Figure 9). This makes it a suitable
test case for the method proposed here.

A working simulation of this instrument where the
interactions between different components were based on
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FIG. 7. Snapshots of the wire-membrane collision. The

wire has ρs = 1 g/m, tension Ts = 10 N, length L =

0.2 m. The wire ends are located at (x0, y0) = [0.3, L/2],

(xL, yL) = [0.3,−L/2] with respect to the centre of the mem-

brane. The membrane has a radius R = 0.15 m, a tension

Tm = 2000 N/m and a density ρm = 0.2 kg/m2. The wire

is hanging from a rest position 0.4 mm above the membrane.

The wire is initialised in its first mode with a peak amplitude

of 1 mm with respect to its rest position. Animations are

available at the companion webpage32.

FIG. 8. The tromba marina owned by Nationalmuseet in

Copenhagen, Denmark.

(26) was previously published by the same authors29. Be-
low, the details of the simulation using (27) are shown.

A. Models

The complete instrument is subdivided into three
components: the bowed string, the bridge and the body.
These are modelled as a stiff string, mass and plate, re-
spectively, all with loss terms.

Consider a damped stiff string of length L, described
by displacement u = u(χ, t), with χ ∈ [0, L]. Assume a

FIG. 9. The tromba marina’s shoe-shaped bridge. The right

side is pressed against the body while the left side is free to

rattle.

linear differential operator of the form

Ls = ρs∂
2
t − ∂2χ

(
Ts − EI∂2χ + 2ρsσ

1
s∂t
)

+ 2ρsσ
0
s∂t (52)

with linear density ρs, cross-sectional area A = πr2, ra-
dius r, tension Ts , Young’s modulus E, area moment of
inertia I = πr4/4, and loss coefficients σ1

s and σ1
s . The

equation of motion for the bowed string can then be given
as

Lsu = −δ(χ− χb)FbΦ(vrel). (53)

Here, Dirac delta function δ locates the bowing force at
externally supplied bowing position χb = χb(t) and Fb =
Fb(t) is the externally supplied bowing force. Finally, Φ
is the dimensionless friction characteristic described in29,
with relative velocity (between the bow and the string at
the bowing location) vrel = ∂tu(χb, t)−vb, and externally
supplied bowing force vb = vb(t).

Similar to (1), the bridge is modelled as a simple
point-like mass. Its displacement is w = w(t) and its
differential operator is

Lm = Md2/dt2 +K +Mσmd/dt (54)

with mass M , stiffness K and loss coefficient σm.
The body is here modelled as a 2D plate, whose

flexural displacement is z = z(x, y, t), where (x, y) ∈
[0, Lx]× [0, Ly] and where Lx and Ly are the side lengths.
Thus

Lp = ρp∂
2
t +D∆∆ + 2ρpσ

0
p∂t − 2ρpσ

1
p∂t∆ (55)

with surface density ρp, stiffness coefficient D and loss
coefficients σ0

p and σ1
p.

1. Interactions

Interactions between the components are modelled
using N-IT in two different configurations.

The interaction between the bridge and the body is
modelled using (2) such that

η(t) = z(xi, yi, t)− w(t) (56)

is the difference between the state of the body at in-
put location (xi, yi) and the bridge. The input spatial
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distribution is here assumed to be a 2D Dirac’s delta
δ(x− xi, y − yi).

The interaction between the string and the bridge
is using a two-sided version of (2) allowing the collision
potential to act as a connection, and is modelled as28

ϕ(ζ) =
Kζ

β + 1
|ζ|β+1

, Υ =
√

2ϕ (57)

depending on the difference between the state of the
bridge and the string at contact location ζ(t) = w(t) −
u(χm, t). Here, Kζ is a constant, and β ≥ 1.

The effects of the interactions can be added to the
respective components to yield the complete system

Lsu = δ(χ− χm)Υ∇ζΥ− δ(χ− χb)FbΦ(vrel) (58a)

Lmw = ψ∇ηψ −Υ∇ζΥ (58b)

Lpz = − δ(x− xi, y − yi)ψ∇ηψ (58c)

B. Numerical Experiments

For most implementation details such as a discrete
form of the equations in (58) and parameter values, one
may refer to previous work29. The improvements will be
discussed here.

The main improvement is the use of (27) as a dis-
crete form of (2). The change to this new form of gn, as
noted above, solves the problem of spurious oscillations
experienced at values of α and β larger than 1. These
are now changed to be 1.3 and the interactions between
components are now nonlinear.

The full system has been implemented in real time
using C++ and the JUCE framework41. A video show-
casing the implementation can be found via32,42. Snap-
shots of the bowed system can be seen in Figure 10. As
the string is bowed, it causes the bridge to collide with
the body.

VII. CONCLUSIONS

In this work, the problem of simulating collisions
commonly encountered in musical instruments was inves-
tigated. An energy framework was borrowed from previ-
ous works, so that the collisions are elastic, allowing for
nonlinear energy exchanges between the colliding bodies,
though extension to include nonlinear collision losses can
be implemented easily from these templates. Thus, in
the lossless case, motion preserves the Hamiltonian. By
quadratising the nonlinear collision potential, discrete-
time difference schemes were obtained that may be re-
solved by a single matrix inverse at each time step, thus
avoiding iterative root finding algorithms as presented in
previous works. A number of comparative studies was of-
fered, to assess the convergence and stability properties
of the proposed schemes against the benchmark schemes
of previous literature, displaying comparable behaviour.
Pointwise as well as extended collisions can be simulated
in the current framework, taking into account rigid obsta-
cles as well as deformable, moving bodies. Spatial finite
difference schemes as well as modal schemes are possible

FIG. 10. Snapshots of the bowed tromba marina simulation.

A string of length L = 1.90 m is bowed at χb = 1/3L m

(denoted by the arrow in the leftmost snapshot) with vb =

−0.2 m/s and Fb = 1 N (high force for visualisation). A

negative string displacement is visualised as going to the right.

The terminations are shown in black at the string ends. The

bridge is placed at χm = 1.65 m and is shown as a white ball.

The body has side lengths Lx = 0.18 m and Ly = 1.35 m

and is shown as a rectangle where a darker colour indicates

negative displacement. Note that the body is oversampled for

visibility. The bridge-collision location (xi, yi) = (0.135, 1.08)

is shown as a white ‘×’.

in this framework. Finally, the simulation of the tromba
marina, including stiffness, losses, and a bowing mecha-
nism, was offered, where the current collision framework
serves as a model for the rattling bridge connecting the
string to the plate.
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