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Strings are amongst the most common elements found in musical instruments and an appropriate
physical description of string dynamics is essential to modelling, analysis, and simulation. For lin-
ear vibration in a single polarisation, the most common model is based on the Euler–Bernoulli
beam equation under tension. In spite of its simple form, such a model gives unbounded phase and
group velocities at large wavenumbers, and such behaviour may be interpreted as unphysical. The
Timoshenko model has, therefore, been employed in more recent works to overcome such short-
coming. This paper presents a third model based on the shear beam equations. The three models are
here assessed and compared with regard to the perceptual considerations in musical acoustics.
VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4962553]
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I. INTRODUCTION

The simplest model of linear transverse string vibration
is almost certainly the one dimensional (1D) wave equation,
see for example, the book by Bilbao;1 normally it is accom-
panied by additional terms modeling various effects, the
most important of which is stiffness, the subject of this
paper. Stiffness in strings leads to a progressive stretching or
inharmonicity of the partials in the resulting sound, and is
essential in any refined model of string vibration, as it leads
to perceptually salient effects such as octave stretching, as
well as to the reduction of beating phenomena when various
notes are played simultaneously.

The most widely used stiff string model is a variant of
the 1D wave equation incorporating a stiffness term as per
the Euler–Bernoulli model of beam vibration—see Bilbao.1

Here and henceforth in this article, such a model will be
referred to as a stiff string of Euler–Bernoulli type. Such an
equation has been employed in a number of studies, espe-
cially in the case of finite difference simulations of piano
strings. Notable works include those of Ruiz,2 Hiller and
Ruiz,3 Bacon and Bowsher,4 Boutillon,5 Chaigne and
Askenfelt,6 and Giordano.7 In the sound synthesis setting,
such an equation has also been used as a starting point for
digital waveguide models—see Bensa et al.8 and Ducasse.9

The Euler–Bernoulli stiff string model is notable for its
simplicity. It is known, however, that for such equation,
phase and group velocity are unbounded in the limit of high
frequency or wavenumber—see Graff,10 and it has been
noted by some authors that this behaviour is unphysical. To
address this shortcoming, more recent work has employed a
more refined stiff string model, based on the Timoshenko
theory of beams—see the extensive works by Chabassier
and associates.11–13 The Timoshenko theory can be written
as a system of two coupled partial differential equations

(PDEs) of second order, which can be combined into a single
equation of fourth order in both space and time. The
Timoshenko system is hyperbolic, and predicts finite group
velocities; in the low frequency limit, however, the two mod-
els converge. The related issue of how large the differences
between these two models are, and at which point in the
audio spectrum they come into play, has not yet been
addressed in the literature in musical acoustics, and the pur-
pose of this article is to analyse and quantify such differ-
ences with regard to typical strings as they occur in musical
instruments. Timoshenko and Euler–Bernoulli are, of course,
only two among a large number of possible models. A third
system will be considered here, known as the shear model.

The structure of this article is as follows. Defining
parameters for a number of string types which occur in a
musical acoustics setting are given in Sec. II. Section III
presents the derivation of the Timoshenko model, and two
simplified systems that can be derived from it through various
levels of simplification: the shear and Euler–Bernoulli mod-
els. In Sec. IV, the dispersion relations will be derived for the
three models. Boundary conditions and modes will be given
in Sec. V. Section VI gives a comparative analysis of the
three systems, based on the results derived in Sec. V. Finally,
Sec. VII presents a discussion focused on the relative merits
of such models in the setting of musical acoustics.

II. MUSICAL STRINGS: REFERENCE CASES

Before proceeding, it is worth introducing a few param-
eter sets for strings used in musical instruments which will
serve as test cases. As the main interest here is in examining
the limitations of standard stiff string models, strings for
which stiffness effects are at the extreme end of the musical
range are chosen here. The case studies are: double-bass E1,
piano D#1, acoustic guitar E2. In the remainder of the paper,
they will be denoted as, respectively, Eb

1;D
p

#1
, and Eg

2. All
the strings are made of steel and have circular cross section.a)Electronic mail: michele.ducceschi@ed.ac.uk
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Note that winding is not considered for the strings in this
paper. In fact, winding is a technique that allows for an
increase of the mass of a string by covering the steel core with
a denser metal (usually copper) without changing consider-
ably its stiffness (and thus inharmonicity). As Fletcher points
out:14 “the elastic-restoring torque is due almost entirely to
the steel core, but the linear density is due to the core and the
windings.” The string parameters are summarised in Table I.
In the remainder of the paper, G is the shear modulus, j is a
correction factor known as Timoshenko shear coefficient, I is
the area moment of inertia, E is Young’s modulus, T0 is the
applied tension, L0 is the length of the string and r is the
radius. Note that, for isotropic materials, G ¼ E=2ð1þ !Þ,
where ! is Poisson’s ratio (!¼ 0.3 for steel), and for strings of
circular cross section j ¼ 6ð1þ !Þ=ð7þ 6!Þ—see Han
et al.15 Note that the area A and the area moment of inertia I
are readily calculated from r as

A ¼ p r2; I ¼ pr4=4:

III. MODELS

A stiff string is modelled as a beam under tension in the
longitudinal direction, or, in other words, a prestressed rod.
In this respect, the stiff string models discussed in this paper
must draw from appropriate beam theories.

Exact 3D models have been derived for finite-element
applications—see, for example, the works by Jelenić and
Crisfield16 and Betsch and Steinmann.17 In most cases, how-
ever, approximate theories can be used. Approximate models
can be derived by averaging out the effects along the cross
section, and four such models are prominent in the literature:
Timoshenko, shear, Rayleigh and Euler–Bernoulli—see Han
et al.15 The Timoshenko model describes the dynamics of
both transverse and shear waves, and it can be further simpli-
fied to yield the other three models. The validity of the
Timoshenko model has been tested in a number of works:
Traill-Nash and Collar18 compare the first two theoretical
eigenfrequencies of a thick free–free Timoshenko beam ver-
sus experimental results, finding agreement within a 3%
range. Davis et al.19 present a solution, using finite elements,
of the Timoshenko frequency equations and compare the
results versus the exact frequency equations for simply sup-
ported and cantilever beams, showing convergence. Renton20

discusses the validity of the Timoshenko model for different
values of the wavelength/beam depth ratio, concluding that
the model is accurate when such ratio larger than 1 (and
surely this is the case for musical strings). Stephen21 validates
and clarifies the results by Renton, for different choices of

the shear constant. In turn, there is sufficient evidence that
the Timoshenko model constitutes an accurate reference
model for the current scope.

It may be written compactly as

qA w;tt ¼ ðAjGþ "2T0Þw;xx % ðAjG% "1T0Þ/;x;

qI /;tt ¼ EI /;xx þ ðAjG% "1T0Þðw;x % /Þ:

In the system above, w(x, t) and /ðx; tÞ represent,
respectively, the transverse displacement and flexural angle
for t & 0 and for x 2 D¢½0; L0(. Indices after a comma rep-
resent partial differentiation with respect to t or x. Two dis-
tinct forms of the Timoshenko system are encapsulated
above, and denoted here as model 1, and 2, which may be
selected through the parameters "1 and "2, as

ð"1; "2Þ ¼
ð1; 0Þ for Model 1;

ð0; 1Þ for Model 2:

(

The system can be scaled to yield a form with fewer
free parameters. To this extent, consider the following non-
dimensional variables denoted by overbars

!w ¼ w

w0
; !/ ¼ /

/0

; !x ¼ x

x0
; !t ¼ t

t0
;

and the following relations

x2
0 ¼

I

A
; t2

0 ¼
qI

AjG
; /0 ¼

w0

x0
;

a ¼ 1þ T0

AjG
; b ¼ E

jG
:

When rewritten in terms of dimensionless variables
(dropping the overbar notation) the Timoshenko system is as
follows

w;tt ¼ ½1þ "2ða% 1Þ(w;xx % ½1% "1ða% 1Þ(/;x; (1a)

/;tt ¼ b/;xx þ ½1% "1ða% 1Þ(ðw;x % /Þ: (1b)

System (1) is completed by the specification of two ini-
tial conditions each for w and / and two boundary condi-
tions for each end of the domain D. Boundary conditions
will be considered in depth in Sec. V.

The Timoshenko system may be arrived at by means of
different techniques. One may choose to draw a free body
diagram and balance moments and forces; alternatively one
may derive the kinetic and potential energies from elasticity
theory considerations, and perform a variational analysis.
The latter approach is briefly recalled here, whereby the
equations of motion through standard variational approaches,
with the various kinetic and potential energy components
expressible as appropriate quadratic forms.

Assuming regularity of the source term and of the initial
conditions, as well as a set of energy-conserving boundary
conditions (see Sec. V), a strong solution to the system exists
over the domain x 2 D (see, for instance, Chabassier
et al.11). Hence, w;/, and their derivatives up to the order 2

TABLE I. Case studies: double-bass string Eb
1, piano string Dp

#1
and acoustic

guitar string Eg
2. All strings are made of steel, with q¼ 7860 kg/m3,

E¼ 2.02) 1011 Pa, G¼ 7.77) 1010 Pa and j ¼ 0.89.

r (mm) L0 (m) T0 (N)

Eb
1 1.50 1.10 450

Dp

#1
0.74 1.94 310

Eg
2 0.71 0.67 150
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necessarily belong to a set V : D)Rþ such that vðx; tÞ 2
V * C0ðD; RþÞ and vðx; tÞ 2 L2ðDÞ. It is then possible to
define, for two functions v1, v2 2 V, the following scalar
product and norm

hv1; v2i ¼
ðL

0

v1v2 dx; kv1k2 ¼ hv1; v1i:

Using the above notation, the Hamiltonian for the pre-
stressed Timoshenko beam, Hð1Þ;ð2ÞTM , is

H 1ð Þ; 2ð Þ
TM ¼ kw;tk2

2|fflffl{zfflffl}
Kb

þ
k/;tk

2

2|fflffl{zfflffl}
Ks

þ
bk/;xk

2

2|fflfflfflffl{zfflfflfflffl}
Ub

þ k/% w;xk2

2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Us

þ "1
a% 1

2
hw;x;/i% k/k2
h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
U 1ð Þ

t

þ"2
a% 1

2
kw;xk2

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
U 2ð Þ

t

:

(2)

It is composed of kinetic (KTM¢Ks þKb) and potential
(Uð1Þ;ð2ÞTM ¢Us þ Ub þ Uð1Þ;ð2Þt ) energy terms, where the sub-
scripts b,s,t stand for “bending,” “shear,” and “tension,”
respectively. (Notice, however, that Uð1Þt is not by definition
positive; hence the term “energy” is used in this case with a
little abuse of language. See also the remark at the end of
this section). The Lagrangian LTM may be written as

Lð1Þ;ð2ÞTM ¼ KTM % Uð1Þ;ð2ÞTM ;

and, under standard variational procedures, leads to system (1).
Before introducing the boundary conditions, the ques-

tion of which of the two models one should use must be
addressed. A literature survey reveals that the choice of one
model over the other is still matter of debate: Kounadis22

was the first author to address the problem of a prestressed

Timoshenko beam in depth, using both free-body diagrams
and conservative methods: surprisingly, these different
approaches gave rise to two distinct models, with the former
producing model 1, and the latter model 2. He also con-
cluded that model 1 “cannot be derived by means of a varia-
tional (energy) method.” However, it was later shown by
Sato23 that both models can indeed be written in terms of
Hamilton’s principle, with energy components as per Eq.
(2). Later, Djondjorov and Vassilev24 investigated numeri-
cally the onset of buckling for the two models, and pointed
out that further experimental verification was needed to iden-
tify the model which predicts the “critical load” (i.e., the
load at which buckling takes place) more accurately.

Turning the attention now to musical strings, one may
observe that typical tensions are far from being “critical”:
for the strings in Table I the ratio T0=AjG is on the order of
10–3, small compared to the values by Djondjorov and
Vassilev24 (on the order of 1). It is interesting to plot the
phase and group velocities, cp and cg, versus the wavenum-
ber c for the thick Eb

1 string of Table I, for both model 1 and
model 2. This is done in Figs. 1(a) and 1(b), showing a
nearly total overlap; for a more quantitative comparison, one
may refer to Figs. 1(c) and 1(d) for plots of the relative devi-
ation of the two models, for both the phase and group veloci-
ties, and conclude that such deviation is much less than one
part over one thousand over a an interval of wavenumbers
which extends well beyond the audible range. As a result,
the two models in the context of musical acoustics are per-
ceptually indistinguishable.

Model 2 has recently been used by Chabassier et al.12 to
model and simulate the strings of grand-piano. This choice is
partly justified by the positive-definiteness of the quadratic
form Uð2Þt in Eq. (2), as opposed to Uð1Þt , which is of indeter-
minate sign. Such choice will be enforced here as well, and
hence for the remainder of the paper model 1 will be
disregarded.

FIG. 1. (Color online) The double-bass
Eb

1 string. Comparison of prestressed
Timoshenko models, as per (1). (a)
Phase velocity of model 1 (thick line)
and model 2 (dashed line). (b) Group
velocity of model 1 (thick line) and
model 2 (dashed line). (c) Relative
difference of the phase velocities
for model 1 and model 2, defined
as devðcpÞ ¼ 2jcð1Þp % cð2Þp j=jcð1Þp þ cð2Þp j.
(d) Relative difference of the group
velocities for model 1 and model 2,
defined as devðcgÞ ¼ 2jcð1Þg % cð2Þg j=
jcð1Þg þ cð2Þg j.
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A. Timoshenko’s model

Summarising, the prestressed Timoshenko system (TM),
in its scaled form, is

w;tt ¼ a w;xx % /;x; (3a)

/;tt ¼ b /;xx þ w;x % /; (3b)

and the associated Hamiltonian is

HTM ¼
kw;tk2

2
þ
k/;tk

2

2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
KTM

þ
bk/;xk

2

2
þ k/% w;xk2

2
þ a% 1

2
kw;xk2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
UTM

:

Notice that Eq. (3) can be reduced to a single fourth-order,
hyperbolic equation in w,

w;tttt % ðaþ bÞw;ttxx þ abw;xxxx % ða% 1Þw;xx þ w;tt ¼ 0:

(4)

B. Shear model

The Timoshenko model can be simplified in a number
of ways to yield simpler systems. One such model of inter-
est here is known as the shear model and is derived by
neglecting the rotational inertia in Eq. (3b) (see Han
et al.15). In fact, the shear model may be arrived at by con-
sidering the asymptotic solution of Timoshenko for large
wavelengths, as shown by Hodges.25 The validity of such
an assumption was later challenged by Aristizabal-Ochoa,26

who pointed out that the shear beam with at least one free
end and at most one rotationally constrained end invalidates
the conservation of angular momentum, as proven by
Kausel.27 For musical acoustics, however, strings are fixed
and, therefore, the shear model is a valid approximation to
Timoshenko. The prestressed shear system (SH) may be
written as

w;tt ¼ a w;xx % /;x; (5a)

0 ¼ b /;xx þ w;x % /: (5b)

In this system, the shear force is still taken into account
but the absence of rotational inertia forbids the development
of shear waves. The associated Hamiltonian is obtained from
the Timoshenko system by removing the kinetic rotational
energy. Hence,

HSH ¼
kw;tk2

2|fflffl{zfflffl}
KSH

þ
bk/;xk

2

2
þ k/% w;xk2

2
þ a% 1

2
kw;xk2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
USH

:

As before, Eq. (5) may be consolidated into a single
equation in w:

w;tt % bw;ttxx ¼ ða% 1Þw;xx % abw;xxxx: (6)

C. Euler–Bernoulli model

The Euler–Bernoulli (EB) model is obtained from the
shear model in the following way. Substitute / ¼ ejðxt%cxÞ

into Eq. (5b) to obtain / ¼ w;x=ðc2bþ 1Þ. Expanding the
denominator in the limit of small wavelengths c gives
/ + ð1% c2bÞw;x. In the time domain, the corresponding
relation is / ¼ w;x % bw;xxx. This relation is then substituted
into Eq. (5a) to obtain

w;tt % ða% 1Þ w;xx þ b w;xxxx ¼ 0: (7)

For the Euler–Bernoulli model, the Hamiltonian is

HEB ¼
kwtk2

2|fflffl{zfflffl}
KEB

þ a% 1ð Þkwxk2

2
þ bkw;xxk2

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
UEB

:

Before proceeding with Sec. IV, it is worth mentioning
a fourth popular beam model, known as the Rayleigh model,
which is obtained from the Euler–Bernoulli model by adding
rotatory inertia. The Rayleigh model will not be discussed in
detail here. This choice is justified by the relative importance
of the shear term over the rotatory inertia term. As Han et al.
point out:15 “[It is established that] for a typical material and
cross section, the shear term is roughly 3–6 times larger than
the rotary term.” Hence, the Rayleigh model will be dis-
carded from now on.

IV. DISPERSION RELATIONS

Stiff strings are dispersive. The dispersion relations for
the present models are obtained by examining the behaviour
of a monochromatic solution of frequency x and wavenum-
ber c, thus extracting a characteristic equation. The mono-
chromatic solution is of the form

w ¼ ejðxt%cxÞ:

When substituted into either Eqs. (4), (6), or (7), the
characteristic equations are recovered. They are now pre-
sented and discussed.

A. Timoshenko’s model

For model (4), the characteristic equation is

x4 þ ð%ac2 % bc2 % 1Þx2 þ ac2 % c2 þ abc4 ¼ 0:

This is a fourth order equation in x, for which solutions
may be written as

x2
6 ¼

aþ bð Þc2 þ 1

2
6

1þ b% að Þc2
# $2 þ 4c2

% &1=2

2
:

Notice that the Timoshenko system possesses two differ-
ent dispersion curves, which will be indicated here as (þ)
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and (–). The graphs of these curves (for the Eb
1 string) are

plotted in Fig. 2.
In the small and large wavenumber limits, one has

lim
c!0

x2
6 ¼

1þ ðbþ 1Þc2

ða% 1Þc2;
lim
c!1

x2
6 ¼

bc2

ac2:

((

The limits of the phase and group velocities are also of
interest. The phase and group velocities are defined as

cp ¼
x
c
; cg ¼

dx
dc
:

The phase velocity has the following limiting values:

lim
c!0

cp6 ¼
1
ða% 1Þ1=2;

lim
c!1

cp6 ¼
b1=2

a1=2:

((

Note that, although for both (þ) and (%) the phase velocities
are bounded at infinity, the phase velocity of (þ) is
unbounded for small wavenumbers. The limits for the group
velocities are readily obtained as

lim
c!0

cg6 ¼
ðbþ 1Þ1=2

ða% 1Þ1=2;
lim
c!1

cg6 ¼
b1=2

a1=2:

((

Hence the group velocity is always bounded. This prop-
erty of bounded limiting group velocity has motivated the
use of the Timoshenko model for musical acoustics, see, for
example, Chabassier et al.11 Notice in particular, though,
that for strings of musical interest, one of the solution curves
(þ) lies well outside the audio range.

B. Shear model

For model (6), the characteristic equation is

x2 ¼ c2 abc2 þ a% 1
# $

bc2 þ 1
:

Again, asymptotic solutions are sought in the small and
large wavenumber limits:

lim
c!0

x2 ¼ ða% 1Þc2; lim
c!1

x2 ¼ ac2:

These limits yield the following phase and group
velocities

lim
c!0
½cp; cg( ¼ ða% 1Þ1=2; lim

c!1
½cp; cg( ¼ a1=2:

Notice that these are the same asymptotes as the (%)
branch of the Timoshenko model, which is that which is of
primary interest in musical acoustics.

C. Euler–Bernoulli model

For Eq. (7), the dispersion relation is readily obtained as

x2 ¼ c2½ða% 1Þ þ c2b(:

In this case one sees immediately that

lim
c!0

x2 ¼ ða% 1Þc2; lim
c!1

x2 ¼1:

lim
c!0
½cp; cg( ¼ ða% 1Þ1=2; lim

c!1
½cp; cg( ¼1:

At low frequencies, the behaviour is the same as for the
shear and Timoshenko models. However, both phase and
group velocities become unbounded at high frequencies.
Such characteristic is of course an anomaly, and has been
suggested as a reason for using thick beam theories in musi-
cal acoustics applications.

V. BOUNDARY CONDITIONS AND MODES

The dispersion relations obtained in Sec. IV are valid
for waves travelling on unbounded strings. When boundaries
are considered, particular solutions in the form of standing
waves appear in the systems. The relation between the fre-
quency of oscillation and the (complex) wavenumber of the
standing wave can be obtained for a given model by
considering

w ¼ ejxterx;

with x 2 R and r 2 C. Inserting such solution into either
Eqs. (4), (6), or (7), one obtains characteristic equations to
be solved for r. Such equations are fourth-order in r with sol-
utions (r1, r2, r3, r4) and, therefore, a standing wave has the
general form

w ¼ ejxtWðxÞ; (8)

with

WðxÞ ¼ d1er1x þ d2er2x þ d3er3x þ d4er4x: (9)

It is anticipated that for the three models in this paper,
the complex wavenumbers (r1, r2, r3, r4) are such that

r1; r2 2 R; r1 ¼ %r2;
r3; r4 2 iR; r3 ¼ %r4:

For this reason, the modal frequencies can be
expressed as

FIG. 2. Double-bass Eb
1. Dispersion relations (þ) and (%) for the prestressed

Timoshenko system. Audible range below dashed line.
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W ¼ d1 sinðk%xÞ þ d2 cosðk%xÞ þ d3sinhðkþxÞ

þ d4coshðkþxÞ; (10)

where kþ ¼
ffiffiffiffi
r2

1

p
; k% ¼

ffiffiffiffiffiffiffi
jr2

3j
p

.
The coefficients d¢ðd1; d2; d3; d4ÞT are not indepen-

dent. They are found by inserting Eq. (8) into the prescribed
boundary conditions. This gives an equation of the form

A d ¼ 0; (11)

where A is a 4) 4 matrix. Nontrivial solutions exist when
the determinant of A vanishes.

In the following subsections, the characteristic equations
and boundary conditions will be given and discussed for the
Timoshenko, shear, and Euler–Bernoulli models.

A. Timoshenko’s model

Boundary conditions for the prestressed Timoshenko
system may be obtained by varying the Lagrangian.
Classical simply supported (SS), clamped (CL), and free
(FF) conditions are recovered as

SS : w ¼ /;x ¼ 0; CL : w ¼ / ¼ 0;

FF : aw;x % / ¼ /;x ¼ 0: (12)

The simply supported conditions describe a fixed edge
with vanishing moment (/;x). For the clamped case, the edge
and the cross section are fixed (therefore, these conditions
are purely geometrical); for the free case both the moment
and the shear force vanish. The boundary conditions for the
equivalent fourth-order Eq. (4) are summarised in Table II.

The characteristic equation for the complex wavenum-
ber r is

abr4 þ r2½ðaþ bÞx2 % aþ 1( þ x4 % x2 ¼ 0;

with solutions

2ab r2
6 ¼ a% 1% ðaþ bÞx26

h
ða% bÞ2x4

þ 2ðaþ bþ ab% a2Þx2 þ ða% 1Þ2
i1=2

¢P1ðx2Þ6½P2ðx2Þ(1=2:

One can prove that P2ðx2Þ > 0 8x2 2 Rþ, and thus
r2
6 2 R 8x2 2 Rþ. Turning to the sign of r2

6, one has

w1 , 1 w2 > 1

r2
þ & 0 <0

r2
% , 0 <0

The solutions for x2> 1 are in essence the discrete equiva-
lent of the (þ) branch in Fig. 2. Solutions corresponding to the
(%) branch (which is the branch of interest in musical acoustics)
are obtained for x2, 1. The general solution for the modes is
of the form of Eq. (10), with kþ ¼

ffiffiffiffiffi
r2
þ

p
; k% ¼

ffiffiffiffiffiffiffiffi
jr2
%j

p
. Solving

Eq. (11) for the selected boundary conditions gives a transcen-
dental equation which must be solved numerically. A summary
of such frequency equations for the classic boundary conditions
is given in Table III.

B. Shear model

For the shear model, boundary conditions may be deter-
mined, again using variational methods, as follows

SS : w ¼ /;x ¼ 0; CL : w ¼ / ¼ 0;

FF : aw;x % / ¼ /;x ¼ 0: (13)

Note that these are formally identical to those for the
Timoshenko system. The boundary conditions in the sole
variable w, however, are different (see Table II).

Substitution of Eq. (8) into Eq. (5) gives the characteris-
tic equation in r

abr4 þ r2½bx2 % aþ 1( % x2 ¼ 0;

with solutions

2ab r2
6 ¼ a% 1

% bx26 b2x4 þ 2bðaþ 1Þx2 þ ða% 1Þ2
h i1=2

:

In this case r2
þ > 0 8x2 2 Rþ and r2

% < 08x2 2 Rþ.
Hence, as for the Timoshenko case, the modal functions are
of the form Eq. (10) with kþ ¼

ffiffiffiffiffi
r2
þ

p
; k% ¼

ffiffiffiffiffiffiffiffi
jr2
%j

p
. Solving

Eq. (11) for the selected boundary conditions leads to the
transcendental frequency equations given in Table III.

C. Euler–Bernoulli model

Boundary conditions are again obtained through a varia-
tional approach. The result is

SS : w ¼ w;xx ¼ 0; CL : w ¼ w;x ¼ 0;

FF : w;xx ¼ ð1% aÞw;x þ bw;xxx ¼ 0: (14)

TABLE II. Summary of classical boundary conditions for the Timoshenko,

shear and Euler–Bernoulli models. All quantities in the table vanish at the
boundary.

SS CL FF

TM w w %ðaþ bÞw;ttx þ ð1% aÞw;x þ abw;xxx

w;xx abw;xxx þ w;x % bw;xtt w;tt % aw;xx

SH w w %bw;ttx þ ð1% aÞw;x þ abw;xxx

w;xx abw;xxx þ w;x % bw;xtt w;tt % aw;xx

EB w w ð1% aÞw;x þ bw;xxx

w;xx w;x w;xx

TABLE III. General form for the frequency equations for a prestressed
Timoshenko, shear or Euler–Bernoulli beams, for the classical simply sup-

ported, clamped and free end conditions. The coefficients Ccl, Cff have
lengthy expressions and are, therefore, given in the Appendix.

SS sinðk%LÞsinhðkþLÞ ¼ 0

CL Ccl sinðk%LÞsinhðkþLÞ % cosðk%LÞcoshðkþLÞ þ 1 ¼ 0

FF Cf f sinðk%LÞsinhðkþLÞ % cosðk%LÞcoshðkþLÞ þ 1 ¼ 0
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The characteristic equation is

r2
6 ¼

a% 1ð Þ6 a% 1ð Þ2 þ 4bx2

h i1=2

2b
:

Clearly r2
þ > 0 8x2 2 Rþ and r2

% < 08x2 2 Rþ and so
the modal function W can be written again as Eq. (10) where
kþ ¼

ffiffiffiffiffi
r2
þ

p
; k% ¼

ffiffiffiffiffiffiffiffi
jr2
%j

p
. Inserting this solution into the cho-

sen boundary conditions in Table II gives the transcendental
frequency equations given in Table III.

VI. ANALYSIS

Now that the equations, dispersion relations and modes
have been formally derived for the three models, a quantita-
tive analysis is provided, to assess the differences amongst
the models for the specific cases of Table I. First, dispersion
curves, phase and group velocities will be plotted and ana-
lysed; second, a few modes will be calculated and compared.

A. Dispersion curves

Dispersion curves are now presented for the strings of
parameters as given in Table I.

Figure 3 shows the dispersion relations, phase and group
velocities for the low piano string, Dp

#1
. Note in particular,

that the phase and group velocities [Figs. 3(b) and 3(c)] of
the Timoshenko and shear models do attain the same limit at
large wavenumbers (i.e., a1/2), as shown in Sec. IV, while
for the Euler–Bernoulli model, they diverge. In the limit of
small wavenumbers the three models show good agreement.
The horizontal line in Fig. 3(a) represents the limit of human
hearing (20 kHz): this is the upper limit of interest in musical
acoustics. Undoubtedly, frequencies for the Euler–Bernoulli
and shear models are somewhat higher than for the
Timoshenko system, but the differences are small for audio
frequencies. To quantify the deviation from the Timoshenko
model, relative deviations for the frequencies and group
velocities are defined in the following way

devxEB;xSH ¼ sup 0;!c½ (

((((
xEB;SH

xTM
% 1

((((;

devcgEB;cgSH
¼ sup 0;!c½ (

((((
cgEB;SH

cgTM
% 1

((((; (15)

where !c is the wavenumber corresponding the upper limit of
human hearing in the Timoshenko model (!c - 254 rad=m
for Dp

#1
, as seen in Fig. 3), and “sup” indicates the supremum

(although in all cases sup is found at !c). Note that the devia-
tion of the phase velocity is necessarily equal to the devia-
tion of the frequencies and, therefore, it is not calculated.
With these definitions, one obtains

devxEB ¼ 0:016; devcgEB ¼ 0:034;

devxSH ¼ 0:004; devcgSH ¼ 0:008:

For a given model, the deviation of the group velocity is
larger than the deviation of the phase velocity by a factor
close to 2 and the shear model is more accurate than the

Euler–Bernoulli model by a factor close to 4. Note that the
deviation for x, calculated in cents, gives

cdev¢1200 log2

xEB;SH

xTM
¼

27:6 cents for EB;

7:20 cents for SH:

(

This is a little more than a quarter of a semitone for the
Euler–Bernoulli model and a quarter of that for the shear
model.

For the Eb
1 string of the double-bass the deviations as

defined in Eq. (15) (with !c - 184 rad=m) are

devxEB ¼ 0:036; devcgEB ¼ 0:073;

devxSH ¼ 0:008; devcgSH ¼ 0:016:

Note in particular, that for the piano string Dp

#1
both

the Euler–Bernoulli and shear models are closer to the
Timoshenko system than the double-bass string Eb

1: this is in
accordance with the fact that the piano string is slenderer
that the double-bass string (i.e., the ratio between the radius
and the length is smaller for Dp

#1
than for Eb

1). Deviations in
cents are

FIG. 3. (Color online) The piano Dp

#1
string. For all figures, the vertical

dashed line is the upper limit of human hearing. TM is represented by a solid
line, SH by a dashed-dotted line, EB by a dashed line. (a) Dispersion rela-
tion; horizontal dotted line is upper limit of human hearing. (b) Phase veloc-
ity; horizontal dotted line is the limiting velocity for the shear and
Timoshenko models, !cp ¼ a1=2; (c) group velocity; horizontal dotted line is
the limiting velocity for the shear and Timoshenko models, !cg ¼ a1=2.
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cdev ¼
61:5 cents for EB;

14:7 cents for SH;

(

which shows that the maximum deviation over the range of
audible frequencies is about half a semitone for the
Euler–Bernoulli model and one sixth of a semitone for the
shear model.

For the guitar Eg
2 string, with !c - 255 rad=m

devxEB ¼ 0:015; devcgEB ¼ 0:031;

devxSH ¼ 0:004; devcgSH ¼ 0:008:

Deviations in cents are

cdev ¼
26:1 cents for EB;

6:70 cents for SH;

(

similar to those for the Dp

#1
string.

B. Modal frequencies

The frequency equations in Table III can be solved
using an appropriate root finder method, for instance the
Newton-Raphson method. Table IV presents a few eigenfre-
quencies for fixed conditions for the three strings, comparing
the three models. Note that, for simply supported conditions
and in the case of the Euler–Bernoulli model, the results in
the Table are consistent with the well known formula for
inharmonicity, i.e.,

fn ¼ nf1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a% 1þ b np=Lð Þ2

a% 1þ b p=Lð Þ2

s

:

The modal frequencies for the piano Dp

#1
string are plot-

ted in Fig. 4, for the three models. It is seen that for low
mode numbers the eigenfrequencies are coincident, and they
start to deviate as the mode number is increased.

Figure 5 shows the deviation in cents of the shear and
Euler–Bernoulli models from the Timoshenko system, over a

TABLE IV. Collection of a few eigenfrequencies under clamped and simply

supported conditions, comparison of TM, SH, EB over the three strings
under study. Note that for 50 and 100 the frequencies in the table must be
multiplied by 103. Values in Hz.

Clamped S. Supported

Mode Eb
1 Dp

#1
Eg

2 Eb
1 Dp

#1
Eg

2

1 44.63 39.43 86.36 41.20 38.93 81.85 TM

44.63 39.43 86.36 41.20 38.93 81.85 SH

44.63 39.43 86.36 41.20 38.93 81.85 EB

10 684.5 402.1 1109 640.7 396.9 1.055 TM

684.7 402.1 1110 640.8 397.0 1.055 SH

685.1 402.1 1110 641.1 397.0 1.055 EB

50 () 103) 12.47 2.782 17.30 12.24 2.750 17.00 TM

12.54 2.784 17.37 12.31 2.751 17.05 SH

12.75 2.786 17.55 12.51 2.753 17.22 EB

100 () 103) 46.10 8.727 64.50 45.72 8.656 63.93 TM

46.91 8.742 65.30 46.53 8.671 64.72 SH

50.02 8.780 68.08 49.53 8.707 67.40 EB

FIG. 4. (Color online) Eigenfrequencies
for the Eg

2 string under clamped bound-
ary conditions for Timoshenko (circles),
shear (upward triangles), Euler–Bernoulli
(downward triangles), for different modal
numbers.
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large frequency range, for simply supported boundary condi-
tions. The three plots correspond to the three strings
Eb

1; Dp

#1
; Eg

2. The limit of human hearing (20 kHz) is marked
with a vertical dashed line; the two horizontal lines are the 5
and 50 cents boundaries. It is seen that, as expected, Eb

1 is the
string which shows a larger deviation, and also the string for
which deviation sets in at smaller frequencies compared to
the other two models. Deviation in cents at the limit of hear-
ing are not dissimilar from those already given for the disper-
sion curves, in Sec. VI A. Basically, the Euler–Bernoulli
model deviates by about half a semitone at the limit of human
hearing, for the bass string, whereas the shear model deviates
by about a quarter of that. In addition, note that, for the bass,
the 5 cents boundary is overtaken at about 2 kHz for the
Euler–Bernoulli model and 7 kHz for the shear model. For the
piano and guitar strings, such boundary is overtaken at around
4 kHz for the Euler–Bernoulli model and above 10 kHz for
the shear model.

It is worth recalling that for the stings under consider-
ation stiffness effects are at the extreme, and that for slen-
derer strings a better match is expected.

VII. DISCUSSION AND CONCLUSIONS

Three linear string models were presented, assessed and
evaluated in cases of interest in musical acoustics. All these

models take into account stiffness, which is responsible for
various important perceptual effects. Previous works have
made extensive use of the Euler–Bernoulli model, because
of its simple form. However, in the limit of large wavenum-
bers the phase and group velocities attain infinity, and such
behaviour has been regarded by a few as unphysical. The
other prominent model in the literature, the Timoshenko
model, has bounded group velocity. Here a third model was
introduced in the context of musical acoustics, based on the
shear model for beams.

In this paper, it was shown that not only does the
shear model present bounded phase and group velocities,
but the asymptotes at infinity are the same as for the lower
branch of the Timoshenko system. The shear model
presents a simpler mathematical formulation than the
Timoshenko model. In particular, when the system is writ-
ten in the sole transverse displacement w, the shear model
is of order 2 in time, whereas the Timoshenko model is of
order 4, thus requiring the specification of four initial con-
ditions. As a consequence of that, the upper branch of the
Timoshenko system is not reproduced by the shear model.
However, for musical acoustics this is not a limitation as
it such a branch was shown to lie well above the audible
range.

All three models show good agreement at low fre-
quencies, with the dispersion relations attaining the same
limit.

The modal frequencies reflect the behaviour already
noted for the dispersion curves; hence extremely good match
for lower modes and increasing deviation as the mode num-
ber increases. Again, deviations are more prominent for the
Euler–Bernoulli model than for the shear model, with the lat-
ter presenting maximum deviations of less than 1 semitone
for all the case studies. It is as well worth noticing that,
because the deviations grow monotonically with the mode
number, for large portions of the audible spectrum both the
Euler–Bernoulli and shear models present negligible devia-
tions from the Timoshenko system.

The results in this paper show that the shear model
can be used as a very satisfying alternative to the
Timoshenko model. In view of a numerical application,
the shear model can be used in its compact form Eq. (6),
which includes the effect of the constraint due to the shear
deformation.

On the other hand, the popularity of the Euler–Bernoulli
model finds here further justification, especially if one is
interested in analysing and possibly simulating slenderer
strings than those presented here as case studies; if at high
frequencies the Euler–Bernoulli model may produce percep-
tually noticeable differences, for large parts of the spectrum
the deviations remain very small.
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FIG. 5. (Color online) Deviations in cents under simply supported boundary
conditions, for (a) Eb

1; (b) Dp

#1
; (c) Eg

2. In the figures, SH is represented by a
dashed-dotted line, EB by a dashed line. The vertical dashed lines represent
the limit of human hearing (20 kHz) and the horizontal solid lines represent
the 5 and 50 cents limits.
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APPENDIX: COEFFICIENTS FOR THE FREQUENCY
EQUATIONS IN TABLE III

A. Timoshenko’s model

Ccl ¼ CN
cl=CD

cl;

CN
cl ¼ b2ðk2

% % k2
þÞx

4 þ ðbðk% % kþÞðbðk3
þ % k3

%Þa
þ k% þ kþÞ%bðk% þ kþÞðbðk3

% þ k3
þÞa

þ kþ % k%ÞÞx2%bðk3
þ % k3

%Þaþ k% þ kþÞ
) ðbðk3

% þ k3
þÞaþ kþ % k%Þ;

CD
cl ¼ 2k%kþðabk2

þ þ bx2 þ 1Þðabk2
% % bx2 % 1Þ:

Cf f ¼ CN
f f=CD

f f ;

CN
f f ¼ %ðaþ bÞðk% þ kþÞx4 þ ðaðk% þ kþÞ % kþ % k%

þabðk% þ kþÞ2ðk% % kþÞ þ a2k%kþðk%%kþÞÞx2

þak%kþðk% % kþ þ aðkþ % k% þ bk%kþ
) ðk% þ kþÞÞÞ;

CD
f f ¼ 2k%kþðak2

% %x2Þðak2
þ þx2Þ

) ðax2 % aþ bx2 % abk2
% þ 1Þ

) ðax2 % aþ bx2 þ abk2
þ þ 1Þ:

B. Shear model

Ccl ¼ CN
cl=CD

cl;

CN
cl ¼ bðk2

þ % k2
%Þx

4 þ 2bðabðk4
% þ k4

þÞ % k2
% þ k2

þÞx
2

% abðabðk6
% þ k6

þÞ þ 2k4
% þ 2k4

þÞ % k2
% þ k2

þ;

CD
cl ¼ 2k%kþð%abk2

% þ bx2 þ 1Þðabk2
þ þ bx2 þ 1Þ:

Cf f ¼ CN
f f=CD

f f ;

CN
f f ¼ ðbðk% % kþÞx4%ðk% % kþÞðabk2

% % abk2
þ

þ a% 1Þx2 % ak%kþðak% % kþ % k% þ akþ

% abk%k
2
þ þ abk2

%kþÞÞð%bðk% þ kþÞx4

þ ðk% þ kþÞðabk2
% % abk2

þ þ a% 1Þx2

þ ak%kþðk% % kþ % ak% þ akþ þ abk%k
2
þ

þ abk2
%kþÞÞ;

CD
f f ¼ 2k%kþðak2

% % x2Þðak2
þ þ x2Þ

) ðabk2
% % bx2 þ a% 1Þðabk2

þ þ bx2 % aþ 1Þ:

C. Euler–Bernoulli model

Ccl ¼ ðk2
þ % k2

%Þ=ð2k%kþÞ;
Cf f ¼ CN

f f=CD
f f ;

CN
f f ¼ ðk% þ kþÞaþ bk%kþðk% % kþÞ % k% % kþÞ
) ðkþ % k% þ aðk% % kþÞ % bk%kþðkþ % k%Þ;

CD
f f ¼ 2k%kþðbk2

% þ a% 1Þðbk2
þ % aþ 1Þ:
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