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Several well-established approaches to physical modeling synthesis for musical instruments
exist. Finite-difference time-domain methods are known for their generality and flexibility in
terms of the systems one can model but are less flexible with regard to smooth parameter
variations due to their reliance on a static grid. This paper presents the dynamic grid, a method
to smoothly change grid configurations of finite-difference time-domain schemes based on sub-
audio–rate time variation of parameters. This allows for extensions of the behavior of physical
models beyond the physically possible, broadening the range of expressive possibilities for the
musician. The method is applied to the 1D wave equation, the stiff string, and 2D systems,
including the 2D wave equation and thin plate. Results show that the method does not introduce
noticeable artefacts when changing between grid configurations for systems, including loss.

0 INTRODUCTION

The functioning of nearly any musical instrument can be
subdivided into exciter and resonator components [1, 2].
Examples of resonators are the violin (strings and body)
and brass instrument bore, which are excited by the bow
and lips of the player, respectively. The resonator is often
assumed to be linear (exceptions being nonlinear string vi-
bration [3] or shock waves in bores [4]) and time-invariant,
whereas the excitation is usually modeled as a lumped non-
linearity and can be controlled by the performer over time.
However, real-world cases in which the defining parameters
of the resonator are time-varying do exist. A notable exam-
ple is the trombone, for which the length of the acoustic
tube is changed during performance. Furthermore, mem-
brane tension in timpani or “hourglass drums” is varied in
performance. See [5, SEC. 12.4] for more examples.

Over the past few decades, much work has been done
on emulating real-world musical instruments, specifically
resonator components, through various physical modeling
techniques. A detailed comparison and summary can be
found in [6]. Finite-difference time-domain (FDTD) meth-

ods, although not the most efficient, are flexible and gener-
alizable in terms of the systems one can model [7].

Although FDTD methods have been extensively used for
sound synthesis purposes, relatively little work has been
done on varying the defining parameters of the resonator
during performance. Besides needing to handle the difficul-
ties that arise when working with time-varying systems—
both the difficulties in the underlying continuous equations
and stability issues in numerical implementation—most
physical resonators (excluding the exceptions mentioned
before) are described by a fixed set of parameters. In other
words, properties such as material density and geometry of
the instrument are unchangeable in the real world and will
thus remain this way in simulation.

In the authors’ view, one of the greatest benefits of mu-
sical instrument modeling is extending instrument func-
tionality and design beyond that which is physically pos-
sible. Instrument properties that are normally fixed can be
made time-varying to greatly extend the range of sound
and expression available to the musician. Extensions to the
time-varying case of physical modeling synthesis have been
presented using different methodologies: modal synthesis
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[8] in [9, 10], digital waveguides [11] in [12, 13], and mass-
spring systems in [14]. An acoustic tube with time-varying
length implemented using FDTD methods is presented in
[15] and uses full-grid interpolation to update the system
states whenever the length is changed.

This paper presents the dynamic grid, a method to al-
low for time-varying parameters in real-time simulations of
musical instruments based on FDTD methods. The current
work generalizes the method presented in [16], in which it
is applied to the 1D wave equation, and extends it to more
complex systems, such as the stiff string, and 2D systems,
including the 2D wave equation and thin plate. Changes in
parameter values are assumed to be sub-audio rate (con-
trol rate) such that they can be applied to commonly used
FDTD schemes. The method appears in part in [5, Chapter
12] and has been used to model the trombone, including
time-varying length in [17]. Here, grid points are added
along the grid as opposed to [15], in which this only hap-
pens at the radiating end.

This paper is structured as follows: SEC. 1 presents the
1D wave equation as a starting point and introduces FDTD
methods. SEC. 2 introduces the dynamic grid and its appli-
cation to the 1D wave equation. SEC. 3 extends the method
to the stiff string, after which SEC. 4 presents its application
to 2D systems including the 2D wave equation and thin
plate. SEC. 5 presents the analysis of the method and its
results, and a discussion and concluding remarks appear in
SECS. 6 and 7, respectively.

1 1D WAVE EQUATION

A useful starting point for illustrating the dynamic grid
is the 1D wave equation, with state variable q(x, t) defined
over spatial coordinate x ∈ [0, L] for some length L (in
meters) and time t ≥ 0 (in seconds):

∂2
t q = c2∂2

x q. (1)

Here, c is the wave speed (in meters per second), and deriva-
tives with respect to t and x are denoted by ∂ t and ∂x,
respectively. In Eq. (1), q can be interpreted as the trans-
verse displacement of an ideal string or acoustic pressure
in a cylindrical tube. A basic choice of boundary condition
is the Dirichlet condition, which can be interpreted as a
“fixed” termination for the ideal string, or an “open” condi-
tion or the acoustic tube. The Dirichlet boundary condition
is defined as

q(0, t) = q(L , t) = 0. (2)

1.1 Numerical Methods
To discretize Eq. (1) using FDTD methods, a spatio-

temporal grid needs to be defined first. Time t ≥ 0 can be
discretized as t = nk with temporal index n = 0, 1, 2, . . .

and time-step k = 1/fs (in seconds) with sample rate fs (in
Hertz). Space x = [0, L] is subdivided into N equal intervals
of length h (in m)—also called the grid spacing—according
to x = lh with spatial index l ∈ {0, . . . , N }.

Using these definitions, the continuous state can be ap-
proximated as q(x, t) � qn

l , in which qn
l is a grid function

that describes the state of the system over N + 1 grid points.
Furthermore, continuous-time derivatives that appear in Eq.
(1) are approximated as

δt t q
n
l = 1

k2

(
qn+1

l − 2qn
l + qn−1

l

)
� ∂2

t q,

δxx qn
l = 1

h2

(
qn

l+1 − 2qn
l + qn

l−1

)
� ∂2

x q. (3)

Eq. (1) can then be discretized to the following FDTD
scheme:

δt t q
n
l = c2δxx qn

l , (4)

which, using Eq. (3), can be expanded to the following
updated equation:

qn+1
l = 2qn

l − qn−1
l + λ2

(
qn

l+1 − 2qn
l + qn

l−1

)
. (5)

Here,

λ = ck

h
(6)

is referred to as the Courant number [18] and is related to
stability and simulation quality, as will be described in SEC.
1.3.

From Eq. (5), the update at the domain endpoints (l =
0, and l = N) appears to require access to grid points out-
side the defined domain, i.e., qn

−1 and qn
N+1. But, using the

Dirichlet boundary conditions in Eq. (2), one has

qn
0 = qn

N = 0. (7)

In practice, the computational domain is reduced to l =
{1, . . . , N − 1}.

1.2 Matrix Form
Both for compact implementation of FDTD schemes and

for the application of the dynamic grid to more complex
systems later on, it is useful to write an updated equation
[such as Eq. (5)] in matrix form. The general matrix form
of an updated equation is defined as

Aqn+1 = Bqn + Cqn−1, (8)

where the definitions of A, B, and C depend on the system
at hand. Furthermore, qn contains the state of the system at
time index n.

Using Dirichlet boundary conditions, the state qn
l in SEC.

1.1 can be represented as an (N − 1) × 1 column vec-
tor qn = [qn

1 , . . . , qn
N−1]T , in which T denotes the trans-

pose operation. Notice that the boundaries (qn
0 and qn

N )
are not included in the state vector because they are 0 at
all times. With reference to Eq. (8), Eq. (4) can then be
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written in matrix form using the following definitions for
the matrices:

A = IN−1, B = 2IN−1 + λ2Dxx , and C = −IN−1, (9)

where the (N − 1) × (N − 1) matrix

Dxx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . . 0

. . . −2 1
1 −2 1

1 −2
. . .

0
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

and IN−1 is the identity matrix of the same size.

1.3 Stability and Simulation Quality
In order to ensure stability for the scheme in Eq. (4), the

Courant number in Eq. (6) needs to satisfy the Courant-
Friedrichs-Lewy condition [18]:

λ ≤ 1. (11)

If λ = 1, Eq. (4) provides an approximation to Eq. (1) with
the highest possible simulation quality for this scheme [7].
In the case that λ < 1, numerical error is introduced, which
decreases the quality of the simulation shown by a decrease
in bandwidth and dispersive effects. It is important to note
that the smaller λ is, the lower the simulation quality.

Usually, Eq. (11) is rewritten in terms of the grid spacing
such that h ≥ ck, which is implemented as

h := ck, N :=
⌊

L

h

⌋
, h := L

N
, and λ := ck

h
.

(12)

This ensures that λ is as close to 1 as possible while still
satisfying Eq. (11). Here, � · � denotes the flooring operation
that is necessary to ensure an integer number of intervals.
Eq. (12) shows that h needs to be recalculated based on
integer N, after which, λ is calculated from this. If L/h is
not an integer, this means that λ < 1, yielding numerical
dispersion (though usually small if λ is near 1).

2 THE DYNAMIC GRID

As stated in SEC. 0, the goal of this work is to introduce
time-varying parameters into FDTD-based simulations. In
audio applications, the sample rate fs, and thus the time
step k, are rarely varied [7] and therefore assumed fixed
in this work. One can therefore observe from the 1D wave
equation in Eq. (1) that the wave speed c and system length
L are the only parameters that can be made time-varying;
the other variables, such as h, λ, and N are derived from
these physical parameters.

Parameter changes cause several computational issues
to emerge. First, a change in the wave speed c will alter
λ through Eq. (12), which causes issues regarding stability
and simulation quality as detailed in SEC. 1.3. Secondly, and
more importantly, changing c (or L) changes the number of
intervals N according to Eq. (12) and thus the number of

grid points describing the state of the system. Apart from
how and where to add or remove grid points based on the
now-dynamic wave speed, this needs to happen smoothly
in order to prevent audible artefacts.

This work proposes a nonuniform grid with a fractional
number of intervals N = L/h such that N = �N �. This
removes the need for the flooring operation in Eq. (12)
(and therefore the recalculation of h), and allows λ = 1
at all times. Furthermore, N potentially allows for smooth
transitions between grid configurations.

2.1 Proposed Method
In the following, the location of a grid point ql at time

index n will be written as xn
ql

(in meters from the left
boundary). Moreover, the following time-varying param-
eters are indicated with a superscript n: Ln, cn, hn, λn,
N n and Nn. As a starting point, the original system qn

l ,
with l = {0, . . . , N n} is split into two subsystems: vn

lv
with

lv = {0, . . . , Mn
v } and wn

lw
with lw = {0, . . . , Mn

w}:

δt tv
n
lv = (cn)2δxxv

n
lv ,

δt tw
n
lw = (cn)2δxxw

n
lw , (13)

which have Mn
v + 1 grid points and Mn

w + 1 grid points,
respectively. (It is important to note that the superscripts n
in Mn

v and Mn
w are unaffected by the δtt operator after ex-

pansion.) Here, 0 < Mn
v < N n and Mn

w = N n − Mn
v which

causes Eq. (13) to contain one more grid point than the
original system in Eq. (4). Both systems are placed on the
same domain x with their locations defined as

xn
vlv

= lvhn, xn
wlw

= Ln − (Mn
w − lw)hn. (14)

See Fig. 1(a). Notice that although the grid points are al-
lowed to move, sub-audio–rate parameter changes are as-
sumed such that xn+1

vlv
≈ xn

vlv
≈ xn−1

vlv
and xn+1

wlw
≈ xn

wlw
≈

xn−1
wlw

which allows δtt in Eq. (13) to still be applied to vn
lv

and wn
lw

as an approximation to ∂2
t . To transfer the state of

a grid point to its next location, zero-order interpolation (or
rounding) is implicitly used.

With reference to Eq. (14), the grid locations lv = 0
and lw = Mn

w are referred to as the outer boundaries and
fixed to be at the limits of the system domain, i.e., xn

v0
= 0

and xn
wMn

w
= Ln,∀n. Furthermore, Dirichlet boundary con-

ditions are imposed on the outer boundaries according to
Eq. (7). The grid locations lv = Mn

v and lw = 0 are re-
ferred to as the inner boundaries, at which Eq. (13) (after
expansion) requires a definition for the virtual grid points
vn

Mn
v +1 and wn

−1. If N n = N n , i.e., N n is an integer, the
inner boundaries overlap, and the following condition must
be satisfied:

vn
Mn

v
= wn

0 , if xn
vMn

v
= xn

w0
. (15)

This acts as a continuity constraint at the inner boundaries.
As shown in [16], setting the virtual grid points needed to
calculate vn

Mn
v

and wn
0 according to

vn
Mn

v +1 = wn
1 and wn

−1 = vn
Mn

v −1, (16)
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Fig. 1. Illustration of the dynamic grid. System qn
l in Eq. (4) is

split into subsystems vn
lv and wn

lw [Eq. (13)]. The x-axis shows the
location of the respective grid points with “xn” omitted for brevity.
(a) N n = 30. As N n = N n , the inner boundaries overlap. (b)
N n = 30.5. The wave speed cn and thus hn are decreased, N n 	=
N n , and the inner boundaries no longer overlap. (c) Zoomed-in
view of (b). All grid points (including virtual grid points) used in
Eq. (17) are shown. The distance between the inner boundaries is
expressed using αn in Eq. (19). (Image adapted from [16].)

causes Eq. (13) to exhibit identical behavior to the original
system in Eq. (4).

Consider a decrease in wave speed cn, which yields a
decrease in hn. This causes all grid points to move toward
their respective outer boundary according to Eq. (14) [see
Fig. 1(b)]. As the inner boundaries no longer overlap, i.e.,
N n 	= N n , Eq. (16) can no longer be used, and alternative
definitions for the virtual grid points need to be found. To
this end, quadratic Lagrange interpolation can be used:

vn
Mn

v +1 = Invn
Mn

v
+ wn

0 − Inwn
1 ,

wn
−1 = −Invn

Mn
v −1 + vn

Mn
v
+ Inwn

0 , (17)

where

In = αn − 1

αn + 1
, (18)

and

αn = N n − N n (19)

is the fractional part of N n . (Notice that 0 ≤ αn < 1.)
Also see Fig. 1(c). For results of experiments with other
interpolators, see [5, SEC. 12.3].

2.2 Matrix Form
Similar to SEC. 1.2, one can define a general update

equation of a system including the dynamic grid as

An un+1 = Bn un + Cn un−1, (20)

where the definitions of An , Bn and Cn depend on the
system at hand. Furthermore, Mn × 1 vector

un = [
(vn)T , (wn)T

]T
, (21)

with Mn = Mn
v + Mn

w, includes the state of the subsys-
tems in Eq. (13). Here, vn = [vn

1 , vn
2 , . . . , vn

Mn
v
]T and wn =

[wn
0 , wn

1 , . . . , wn
Mn

w−1]T which are Mn
v × 1 and Mn

w × 1, re-
spectively. The 1D wave equation including the dynamic
grid can then be written in matrix form as Eq. (20) with

An = IMn , Bn = 2IMn + (λn)2Dn
xx ,

and Cn = −IMn ,
(22)

where λn = cnk/hn (which can always be set to 1 in the
case of the 1D wave equation, yielding optimal simulation
quality at all times), and Dn

xx is an adapted version of Dxx

in Eq. (10) to include the quadratic interpolation presented
in Eq. (17),

, (23)

and is of sizeMn × Mn . In the extreme case that one of the
systems has only one moving grid point (e.g., if wn = [wn

0 ]
the lower-right quadrant in Eq. (23) will only have one entry
(being In − 2), and the lower-left and top-right quadrants
will only have one row and one column, respectively.

2.3 Adding and Removing Grid Points
If cn is decreased such that Nn > Nn−1, a grid point is

added to the system. One can add points to either v or w or
to both in an alternating fashion as in [16], but here, only
changes in v are considered. A grid point can be added to v
using the following operations:

vn := [(vn)T , I n
3 zn]T ,

vn−1 := [(vn−1)T , I n
3 zn−1]T ,

if N n > N n−1, (24)

where

zn = [vn
Mn−1

v −1, v
n
Mn−1

v
, wn

0 , wn
1 ]T , and

zn−1 = [vn−1
Mn−1

v −1, v
n−1
Mn−1

v
, wn−1

0 , wn−1
1 ]T .

(25)

Notice that I n
3 is used for adding a grid point to both vn

and vn−1 and that Mn−1
v is used as an index for both vn

lv
and

vn−1
lv

. Furthermore, cubic Lagrangian interpolator

I n
3 =

[
− αn (αn+1)

(αn+2)(αn+3)
2αn

αn+2
2

αn+2 − 2αn

(αn+3)(αn+2)

]
, (26)

where αn is as defined in Eq. (19). Notice that, because αn �
0 the moment a grid point is added (because of sub-audio–
rate parameter variations), I n

3 ≈ [0, 0, 1, 0] and the state of
the added grid point is almost fully determined by the state
of the inner boundary wn

0 .
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Removing grid points happens through simple deletion.
If cn is increased such that Nn < Nn−1, a point is removed
from v according to

vn := [vn
1 , . . . , vn

Mn−1
v −1]T ,

vn−1 := [vn−1
1 , . . . , vn−1

Mn−1
v −1]T ,

if N n < N n−1. (27)

It must be noted that for lossless systems, removing grid
points could cause audible artefacts. This will be discussed
in SEC. 5.2. Furthermore, the limit on changing grid con-
figurations is the addition or removal of one grid point per
sample, but this limit needs to be much lower to retain the
sub-audio–rate assumption mentioned before.

Notice that although a proof of convergence of the pro-
posed method is left for future work, numerical experiments
in SEC. 5.3 demonstrate convergence.

3 DAMPED STIFF STRING

Using the matrix in Eq. (23) as a starting point, one can
extend the dynamic grid method to more complex systems.
A commonly used 1D model is the damped stiff string
(see, e.g., [19]), which is described by the following partial
differential equation (PDE) [20]:

∂2
t q = c2∂2

x q − κ2∂4
x q − 2σ0∂t q + 2σ1∂t∂

2
x q, (28)

with stiffness coefficient κ (in m2/s) and frequency-
independent and frequency-dependent damping coeffi-
cients σ0 (in s−1) and σ1 (in m2/s).

Using

δt ·qn
l = 1

2k

(
qn+1

l − qn−1
l

)
� ∂t q, and

δt−qn
l = 1

k

(
qn

l − qn−1
l

)
� ∂t q, (29)

Eq. (28) can be discretized using the following FDTD
scheme:

δt t q
n
l =c2δxx qn

l −κ2δxxxx qn
l −2σ0δt ·qn

l +2σ1δt−δxx qn
l , (30)

where δxxxx = δxxδxx. The first-order temporal opera-
tors for the damping terms are chosen like this to keep
the system explicit. Note that the stability condition is

now h ≥
√

1
2

(
c2k2 + 4σ1k +

√
(c2k2 + 4σ1k)2 + 16κ2k2

)
(in the time-invariant case). Eq. (30) can be written in ma-
trix form using Eq. (8) with

A = (1 + σ0k)IN−1,

B = 2IN−1 + λ2Dxx − μ2Dxxxx + 2σ1k

h2
Dxx , and

C = −(1 − σ0k)IN−1 − 2σ1k

h2
Dxx ,

(31)

where μ = κk/h2 and (for simply supported boundary con-
ditions)

Dxxxx = Dxx Dxx , (32)

with Dxx as defined in Eq. (10).
To apply the dynamic grid to the stiff string, the definition

of Dxx in Eqs. (31) and (32) can simply be replaced by the

Dn
xx from Eq. (23). With reference to the general form in

Eq. (20), the following matrices can then be applied to the
alternative vector u from Eq. (21) to yield the dynamic stiff
string:

An = (1 + σn
0k)IMn ,

Bn = 2IMn + (λn)2Dn
xx − (μn)2Dn

xxxx + 2σn
1k

(hn)2
Dn

xx ,

Cn = −(1 − σn
0k)IMn − 2σn

1k

(hn)2
Dn

xx ,

(33)

where μn = κnk/(hn)2 and (for simply supported boundary
conditions)

Dn
xxxx = Dn

xxDn
xx . (34)

Notice that κn, σn
0, and σn

1 are now allowed to be time-
varying. Furthermore, hn can be obtained by calculating
the stability condition with equality. Sound examples and
an implementation of the dynamic stiff string can be found
via [21]. One example shows a string being made more
inharmonic by increasing κn but decreasing cn to retain the
same pitch. Another varies Ln, cn, κn, σn

0, and σn
1 such that

the timbral qualities of the string vary between a regular
string, its octave, a vibraphone, and a marimba.

4 2D SYSTEMS

This section extends the framework presented in SEC. 2
to higher-dimensional systems. A rectangular 2D system
can be described by a state variable q = q(x, y, t) defined
over (x, y) ∈ [0, Lx] × [0, Ly] with side-lengths Lx and Ly

(both in meters). Discretizing q will result in grid function
qn

l,m in which l ∈ {0, . . . , Nx } and m ∈ {0, . . . , Ny} and the
number of intervals in the x-direction and y-direction are
Nx = �Lx/h� and Ny = �Ly/h�, respectively. Notice that the
same grid spacing h is used in both the x-direction and
y-direction, which is typical for isotropic, homogeneous
systems.

Higher-dimensional systems can be written in matrix
form by stacking or “flattening” the state. For Dirichlet or
simply supported boundary conditions, the following (Nx

− 1)(Ny − 1) × 1 vector can be used to describe the state:

qn = [(qn
1)T , . . . , (qn

Nx −1)T ]T with

qn
l = [qn

l,1, . . . , qn
l,Ny−1]T .

(35)

4.1 2D Dynamic Grid
Rather than splitting the original system into two sub-

systems, one can split it into four. Consider grid function
un

i,li ,mi
, where i ∈ {1, . . . , 4} is the index of the subsystem

(also see Fig. 2).
The subsystems are subdivided into Mn

x,i intervals in the
x-direction and Mn

y,i intervals in the y-direction, and the spa-
tial indices have the following ranges: li ∈ {0, . . . Mn

x,i } and
mi ∈ {0, . . . Mn

y,i }. Subsystems placed next to each other in
the x-direction need to have the same number of points in
the y-direction and vice versa. In other words, the following
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Fig. 2. Applying the dynamic grid to a 2D system. Virtual grid
points are denoted as smaller circles, and boundary points are
not included in the calculation (for Dirichlet/simply supported
boundary conditions).

constraints apply to the number of intervals per subsystem:

Mn
x,1 = Mn

x,3, Mn
x,2 = Mn

x,4, Mn
y,1 = Mn

y,2, Mn
y,3

= Mn
y,4. (36)

Furthermore, 0 < Mn
x,1 < N n

x and Mn
x,2 = N n

x − Mn
x,1, and

0 < Mn
y,1 < N n

y and Mn
y,3 = N n

y − Mn
y,1.

The grid points of each of the subsystems are positioned
in the x-y plane as follows:(

xn
u1,l1 ,m1

, yn
u1,l1 ,m1

)
= (

l1hn, m1hn
)
,(

xn
u2,l2 ,m2

, yn
u2,l2 ,m2

)
= (

Ln
x − (Mn

x,2 − l2)hn, m2hn
)
,(

xn
u3,l3 ,m3

, yn
u3,l3 ,m3

)
= (

l3hn, Ln
y − (Mn

y,3 − m3)hn
)
,(

xn
u4,l4 ,m4

, yn
u4,l4 ,m4

)
=

(
Ln

x − (Mn
x,4 − l4)hn,

Ln
y − (Mn

y,4 − m4)hn
)
.

(37)

Notice that, like in the 1D case in Eq. (14), the boundary
points are fixed at the ends of the domain. If Dirichlet or
simply supported boundary conditions are used, one can
exclude the boundary points in the calculation, and the
ranges for the spatial indices become

l1 = {1, Mn
x,1}, m1 = {1, Mn

y,1},
l2 = {0, Mn

x,2 − 1}, m2 = {1, Mn
y,2},

l3 = {1, Mn
x,3}, m3 = {0, Mn

y,3 − 1},
l4 = {0, Mn

x,4 − 1}, m4 = {0, Mn
y,4 − 1}.

(38)

Finally, one can define the inner boundaries that connect
u1 and u2 as the first vertical inner boundary and those
connecting u3 and u4 as the second vertical inner boundary.
The same can be done for the first and second horizontal

inner boundaries, which are those connecting u1 and u3 and
connecting u2 and u4, respectively.

Similar to Eq. (17) in the 1D case, virtual grid points
at the first vertical and horizontal inner boundary are then
calculated through

un
1,Mn

x,1+1,m1
= In

x un
1,Mn

x,1,m1
+ un

2,0,m2
− In

x un
2,1,m2

,

un
2,−1,m2

= −In
x un

1,Mn
x,1−1,m1

+ un
1,Mn

x,1,m1
+ In

x un
2,0,m2

,

un
1,l1,Mn

y,1+1 = In
y un

1,l1,Mn
y,1

+ un
3,l3,0 − In

y un
3,l3,1,

un
3,l3,−1 = −In

y un
1,l1,Mn

y,1−1 + un
1,l1,Mn

y,1
+ In

y un
3,l2,0, (39)

respectively, and can be applied in the same manner to
the second vertical and horizontal inner boundaries. Here,
similar to Eq. (18) in the 1D case,

In
x = αn

x − 1

αn
x + 1

, and In
y = αn

y − 1

αn
y + 1

, (40)

with

αn
x = N n

x − N n
x , and αn

y = N n
y − N n

y , (41)

and fractional number of intervals in the x-direction and y-
direction are N n

x = Ln
x/hn and N n

y = Ln
y/hn , respectively.

4.1.1 Matrix Form
Similar to Eq. (35), one can stack the total state of the

system into a single column vector. The order in which the
subsystems are stacked, in terms of “column of subsystem
no. #,” is: 1, 3, ..., 1, 3, 2, 4, ..., 2, 4. If Dirichlet or simply
supported boundary conditions are used, the total state can
then be described as the following Mn

2 × 1 column vector:

un = [(vn)T , (wn)T ]T , (42)

with Mn
2 = (Mn

x,1 + Mn
x,2)(Mn

y,1 + Mn
y,3). Here,

vn = [(vn
1)T , . . . , (vn

Mn
x,1

)T ]T , and

wn = [(wn
0)T , . . . , (wn

Mn
x,2−1)T ]T ,

(43)

contain the states of subsystems 1 and 3 and subsystems 2
and 4, respectively:

vn
jn
1

= [(un
1, j n

1
)T , (un

3, j n
1
)T ]T , wn

jn
2

= [(un
2, j n

2
)T , (un

4, j n
2
)T ]T ,

(44)

with j n
1 = {1, . . . , Mn

x,1} and j n
2 = {0, . . . , Mn

x,2 − 1}. Fi-
nally,

un
1,l1

= [un
1,l1,1, . . . , un

1,l1,Mn
y,1

]T ,

un
2,l2

= [un
2,l2,1, . . . , un

2,l2,Mn
y,2

]T ,

un
3,l3

= [un
3,l3,0, . . . , un

3,l3,Mn
y,3−1]T , and

un
4,l4

= [un
4,l4,0, . . . , un

1,l4,Mn
y,4−1]T ,

(45)

where the ranges for li are specified in Eq. (38).

4.1.2 Adding and Removing Grid Points
Addition and removal of grid points happens in a similar

fashion as described in SEC. 2.3, the difference being that
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an entire row or column of grid points is affected rather
than a single grid point.

Considering only alterations in the left subsystems, a col-
umn can be added by carrying out the following operations
on v in Eq. (43)

vn := [(vn)T , Zn(I n
3 )T ]T ,

vn−1 := [(vn−1)T , Zn−1(I n
3 )T ]T ,

if N n
x > N n−1

x , (46)

where

Zn = [(vn
Mn−1

x,1 −1
)T , (vn

Mn−1
x,1

)T , (wn
0)T , (wn

1)T ] and

Zn−1 = [(vn−1
Mn−1

x,1 −1
)T , (vn−1

Mn−1
x,1

)T , (wn−1
0 )T , (wn−1

1 )T ] (47)

contain the states of the vertical inner boundaries and their
first neighbors in the x-direction.

Considering only alterations in the top subsystems, a row
can be added by carrying out the following operations on
u1 and u2 (at n and n − 1) in Eq. (45):

un
1,l1

:= [(un
1,l1

)T , I n
3 zn

1,l1
]T ,

un
2,l2

:= [(un
2,l2

)T , I n
3 zn

2,l2
]T ,

if N n
y > N n−1

y , (48)

where

zn
1,l1

= [un
1,l1,Mn−1

y,1 −1
, un

1,l1,Mn−1
y,1

, un
3,l1,0, un

3,l1,1]T ,

zn
2,l2

= [un
2,l2,Mn−1

y,2 −1
, un

2,l2,Mn−1
y,2

, un
4,l2,0, un

4,l2,1]T , (49)

contain the horizontal inner boundaries and their first neigh-
bors in the y-direction [the ranges for l1 and l2 are given in
Eq. (38)].

Removing grid points also happens in a similar fashion to
the 1D case. Removing a column from the system happens
according to

vn := [(vn
1)T , . . . , (vn

Mn−1
x,1−1

)T ]T ,

vn−1 := [(vn−1
1 )T , . . . , (vn−1

Mn−1
x,1−1

)T ]T ,
if N n

x < N n−1
x , (50)

and removing a row from the system happens (at n and n −
1) according to

un
1,l1

:= [un
1,l1,1, . . . , un

1,l1,Mn−1
y,1 −1

]T ,

un
2,l2

:= [un
2,l2,1, . . . , un

2,l2,Mn−1
y,1 −1

]T ,
if N n

y < N n−1
y . (51)

4.2 2D Wave Equation
The PDE of the 2D wave equation is defined as

∂2
t q = c2�q, (52)

with wave speed c (in meters per second) and Laplacian
� = ∂2

x + ∂2
y . Eq. (52) can be discretized to the following

FDTD scheme:

δt t q
n
l,m = c2δ�qn

l,m , (53)

where δ� = δxx + δyy is the discrete Laplacian, and

δxx qn
l,m = 1

h2

(
qn

l+1,m − 2qn
l,m + qn

l−1,m

)
� ∂2

x q,

δyyqn
l,m = 1

h2

(
qn

l,m+1 − 2qn
l,m + qn

l,m−1

)
� ∂2

y q. (54)

Finally, the stability condition is h ≥ √
2ck.

4.2.1 Matrix Form
Again assuming Dirichlet boundary conditions, one can

define scaled (by h2) matrix forms of δxx and δyy similar to
Eq. (10), i.e., (Nx − 1) × (Nx − 1) matrix Dxx and (Ny − 1)
× (Ny − 1) matrix Dyy . These can be used to obtain a matrix
form of the discrete Laplacian by performing a Kronecker
sum [22, 23]:

D� = Dyy ⊕ Dxx , (55)

which is of size (Nx − 1)(Ny − 1) × (Nx − 1)(Ny − 1).
Using the same-sized identity matrix I = I(Nx −1)(Ny−1), one
can use the general matrix form in Eq. (8), with qn as
defined in Eq. (35), and define the matrices as follows:

A = I, B = 2I + λ2D�, and C = −I, (56)

where, as in the 1D case, λ = ck/h.
To apply the dynamic grid to the 2D wave equation, one

can use the general matrix form in Eq. (20) with state vector
un from Eq. (42) and

An = IMn
2
, Bn = 2IMn

2
+ (λn)2Dn

�, Cn = −IMn
2
. (57)

Here, Mn
2 × Mn

2 matrix

Dn
� = Dn

yy ⊕ Dn
xx , (58)

where Dn
xx and Dn

yy include the effect of the interpolation
at the inner boundaries presented in Eq. (37) and are as
defined in Eq. (23) with In

x and In
y as defined in Eq. (40),

respectively. Finally, hn = √
2cnk.

4.3 Damped Thin Plate
Similar to the damped stiff string presented in SEC. 3,

one can extend the dynamic grid method to other systems
using higher-order spatial derivatives. Consider the PDE of
a damped thin plate [7]:

∂2
t q = −κ2��q − 2σ0∂t q + 2σ1∂t�q, (59)

where parameters are similarly defined to the damped stiff
string in Eq. (28). This can be discretized to

δt t q
n
l,m = −κ2δ��qn

l,m − 2σ0δt ·qn
l,m + 2σ1δt−δ�qn

l,m, (60)

where δ�� = δ�δ� and h ≥ 2
√

κk. Using state vector qn

from Eq. (35), Eq. (60) can be rewritten using the general
matrix form in Eq. (8) using

A = (1 + σ0k)I, B = 2I − μ2D�� + 2σ1k
h2 D�,

and C = −(1 − σ0k)I − 2σ1k
h2 D�.

(61)

Here, I = I(Nx −1)(Ny−1), and, for simply supported boundary
conditions, same-sized matrix

D�� = D�D�, (62)

with D� as defined in Eq. (55).
Similar to before, the dynamic grid can be applied to this

system by replacing the definitions of D� in Eqs. (61) and
(62) by Dn

� from Eq. (58). Using un from Eq. (42), the
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Table 1. Maximum frequency deviation for the dynamic thin
plate (in cents) for different values of N n

x and N n
y .

N n
x \N n

y 15 → 16 16 → 17 17 → 18 18 → 19 19 → 20

15 → 16 –96.00 –93.78 –91.82 –90.06 –88.49
16 → 17 –93.78 –91.54 –89.55 –87.75 –86.15
17 → 18 –91.82 –89.55 –87.52 –85.69 –84.05
18 → 19 –90.06 –87.75 –85.69 –83.84 –82.16
19 → 20 –88.49 –86.15 –84.05 –82.16 –80.47

dynamic thin plate can be written as the general form in Eq.
(20) with

An = (1 + σn
0k)IMn

2
,

Bn = 2IMn
2
− (μn)2Dn

�� + 2σn
1k

(hn)2
Dn

�, and

Cn = −(1 − σn
0k)IMn

2
− 2σn

1k

(hn)2
Dn

�.

(63)

where hn = 2
√

κnk, and for simply supported boundary
conditions

Dn
�� = Dn

�Dn
�, (64)

which is of size Mn
2 × Mn

2. Sound examples can be found
via [21]. One example shows a change in κn (and σn

1) mod-
eling an increase in plate thickness, whereas another shows
changes in Ln

y .

5 RESULTS

5.1 Modal Analysis
One can retrieve the modal frequencies of the implemen-

tation of the dynamic grid by performing a modal analysis
of the update equation in matrix form. For reference, the
general form is Eq. (20) with matrices of the various sys-
tems defined in Eqs. (22), (33), (57), and (63). Assuming
σn

0 = σn
1 = 0, because the influence of losses on modal fre-

quencies are very small for damped systems and for sub-
audio–rate parameter variations, the pth numerical modal
frequency can be calculated as

f n
p �

1

2πk
cos−1

(
1

2
eigp(Bn)

)
, (65)

where eigp( · ) denotes the “pth eigenvalue of.”
To determine the accuracy of the frequencies obtained

in Eq. (65), one can compare modal frequencies against
expected values. Results of a modal analysis of the dynamic
stiff string with κn ≈ 1.26 m2/s and linear changes in cn

corresponding to N n = 15 → 20 can be seen in Fig. 3(a),
as well as the expected modal frequencies.

The largest frequency deviation for the dynamic stiff
string with Nn = 15 is around −67 cents, whereas this
decreases to around −56 cents for Nn = 19. This is similar
to the results presented in [16]. Setting cn = 0 (effectively
reducing the stiff string to an ideal bar [7]), the maximum
frequency deviation for Nn = 15 is around –96 cents.

Results for the dynamic thin plate appear in Table 1. It
can be shown that for a square 2D system, the maximum

Fig. 3. The dynamic stiff string [Eq. (20) with Eq. (33)] with κ
≈ 1.26 and cn is (linearly) swept such that N n = 15 → 20. (a)
Results of Eq. (65). Modes exhibited by the system are shown
in solid black, and expected modal frequencies are shown using
dashed red lines. (b) Output of the dynamic stiff string excited at
n = 0 and l = 1 and output retrieved at the same location (fs =
44.1 kHz).

frequency deviations are identical to the case of the anal-
ogous 1D system. In other words, the 1D and 2D wave
equations share maximum frequency deviations for equal
values of Nn (1D) and N n

x and N n
y (2D). This also holds for

the ideal bar and thin plate. This indicates that frequency
deviations do not worsen when applying the dynamic grid
to higher dimensional systems.

In both the 1D and 2D cases, the system exhibits the
following behaviors:

� If αn = 0 and parameters are static, the split system
exhibits identical behavior to the original.

� The number of modes is always equal to the number
of grid points in the system (excluding boundary
points).

� The higher the mode number, the more its frequency
deviates from the expected frequency for one value
of Nn.

� The higher the total number of grid points in the
simulation, the smaller the frequency deviation.

� The location where a system is split (and thus the
location where grid points are added/removed) does
not influence the frequency content.

5.2 System Behavior
Fig. 3(b) shows the output of the dynamic stiff string

(simulated at fs = 44.1 kHz) with N n = 15 excited at t =
0 s, after which cn is (linearly) swept such that N n = 20
at t = 10 s. One can observe that the highest mode pre-
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Fig. 4. Mean squared error (MSE) for Eq. (13) at a different sample
with a reference of fs = 30 · 44,100 Hz.

dicted by the analysis in Fig. 3(a) is not excited, because
the inner boundaries act as one grid point because of the
rigid connection at the time of excitation [see Eq. (15)].
Furthermore, when a change in grid configuration occurs,
the energy of modes follows the “path of least resistance”
predicted in Fig. 3(a). If modes of two grid configurations
align, the energy transfer happens smoothly, and no no-
ticeable artefacts occur (under sub-audio–rate parameter
variations). This also means that every time a grid point,
and thus a mode, is added at the top of the spectrum, it will
not obtain any energy.

If, on the other hand, N n = 20 → 15 [effectively hor-
izontally flipping Fig. 3(a)], modes seem to “disappear”
around the Nyquist frequency when grid points are re-
moved. Because there are no modes in the new grid con-
figuration to receive energy, its energy is distributed over
the remaining modes, causing audible artefacts. Informal
experiments show that if modes are damped before they
“disappear,” noticeable artefacts are prevented. In the case
of the stiff string, this is what frequency-dependent losses
automatically allow. The minimum value required for σn

1 to
damp the highest mode depends on various factors, such
as the values of other parameters and speed of parameter
variation. In the case of 2D systems, if parameters are var-
ied such that grid points need to be removed, multiple grid
points, and thus modes, “disappear” at once. Although these
do not only include the highest frequency modes, damping
does seem to take care of noticeable artefacts.

For the lossless systems presented in this paper, local
losses could be added at the inner boundaries, presented in
[16, 17] as displacement or state correction. Although this
successfully prevents noticeable artefacts, this method does
introduce unnatural losses to the system.

5.3 Convergence
Although a full proof of convergence for the dynamic

grid is left for future work, Fig. 4 demonstrates converging
behavior. Eq. (13) is excited, and the length is changed from
L = 1 m to L = 0.5 m over the course of 0.1s (left panel)
or vice versa (right panel) and ran at different sample rates.
The reference signal is created by retrieving the output of
running Eq. (13) at fs = 30 · 44,100 Hz. Using a log-
log plot to show the mean squared error, one can observe
a quasi-linear decrease, indicating convergence with first-
order accuracy in k. This result is confirmed by the fact that

at higher sample rates, audible artefacts happen to a lesser
degree.

6 DISCUSSION

As shown in SEC. 5, modal frequencies exhibited by
the dynamic grid deviate from those expected. However,
the largest frequency deviations occur at higher-frequency
ranges, which are less perceptually relevant, and damped
most quickly because of visco-thermal effects. For the 1D
systems presented in this paper, when a (quasi-)harmonic
output is expected, these deviations could cause beating
effects, though listening tests will have to confirm this.

It is obviously not ideal to rely on (frequency-dependent)
losses for grid points to be removed without noticeable
artefacts. However, it can be argued that relying on losses
that are often used in existing models is more natural than
adding artificial damping at specific locations in the grid,
as has been done in previous work [16, 17]. Furthermore,
convergence of the method, although not proven, has been
demonstrated in SEC. 5.3 and shows that at higher sam-
ple rates—although less suited for real-time applications—
audible artefacts happen to a lesser degree.

7 CONCLUSION

This paper presents the dynamic grid, a method to
smoothly change grid configurations of FDTD schemes
allowing for runtime parameter variation. Furthermore,
the Courant-Friedrichs-Lewy–type conditions of these
schemes can be satisfied with equality at all times, max-
imizing simulation quality or bandwidth for any choice of
parameters. The authors extend previous work on the time-
varying 1D wave equation in [16] by applying the dynamic
grid to the stiff string, 2D wave equation, and thin plate.

Future directions include the extension of the method
presented here to 3D, performing another Kronecker sum
as in Eq. (58) for the third dimension (see [23]). Other fu-
ture considerations include listening tests to confirm the
absence of audible artefacts and real-time implementation
and control, such that a player can “mold” their instrument
while performing, potentially discovering new ways of ex-
pression. Finally, full proof of convergence of the method
needs to be established.
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