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This work presents a model of a prepared piano, suitable for sound synthesis purposes. The strings,
acting as primary resonators, are modelled in some detail, including geometric nonlinear effects, and
the string-hammer interaction is also included. The resonating body, the soundboard, is assumed to
be of rectangular shape. Virtual microphones are placed across the soundboard and along the strings.
Moreover, the strings can be prepared by means of objects such as nails and dampers. This model is
intended to be a useful and efficient tool for synthesising piano sounds, with extensive control over
the instrument design.
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1. Introduction

Piano modelling represents a topic of longstanding interest in musical acoustics and digital sound
synthesis. Various models, with varying degrees of refinement, have been proposed in the literature. Of
notable interest are the works of Giordano [1], of Bank et al. [2], and of Chabassier et al. [3]. In the
current work, a realistic, efficient model of a piano is implemented for sound synthesis purposes. The
model can be tuned by choosing a number of physical parameters for the strings, the soundboard and the
hammers. Moreover, various elements such as nails, dampers, and rattles, can be added to the system,
in order to “prepare” the piano (see [4]). The complete system presents numerous nonlinearities: these
are in the form of distributed geometrical nonlinearities in the strings themselves, and in the form of
collision forces arising during contact of the strings with the hammers and with the preparation elements.
Remarkably, the whole system can be solved by a simple matrix inversion at each time step. Stability
may be inferred by energy arguments, both for the distributed nonlinearities (see [5, 6]), and for the
lumped collisions. The latter, in particular, are simulated via a suitable quadratisation of the nonlinear
collision potentials, and this is an element of novelty with respect to previous works. Quadratisation
of nonlinearities has been employed in the context of virtual-analog modelling (see [7, 8, 9]), and has
recently been extended by these authors to partial differential equations of interest in musical acoustics
[10, 11].

2. Continuous Model

In this section, the continuous equations for the prepared piano are presented. The piano is composed
of a set of strings, attached to a soundboard via a bridge. Strings are set into motion by hammers, and
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preparation elements act on the strings.

2.1 Strings

In piano strings two model features lead to prominent perceptual effects: stiffness, and geometric
nonlinearities. The former can be modelled via an appropriate engineering beam model. In previous
works (see, e.g. [3]), refined models including rotational vibrations of the cross section, as per the
Timoshenko model, have been used. This choice is motivated by the relatively large thickness of the low-
pitched piano strings. Surprisingly, even for such strings, stiffness effects can be faithfully reproduced
by means of simpler models (such as Euler-Bernoulli [12]), which will be employed here. Nonlinearities
in piano strings, giving rise to important perceptual phenomena such as phantom partials, arise at high
vibration amplitudes. These geometrical effects can be modelled by a convenient power series expansion,
as per the model of Morse and Ingard [6]. A system of partial differential equations including all of the
above features may be written as

Lsws =
EsAs − Ts

2
∂xs
[
(∂xsws)

3 + 2(∂xsws)(∂xsζs)
]

+
Ps∑
p=1

δ(1)(xs − x(s,p))B(s,p) + δ(1)(xs − x(s,b))Fw
s (1a)

Gsζs =
EsAs − Ts

2
∂xs
[
(∂xsws)

2
]

+ δ(1)(xs − x(s,b))F ζ
s (1b)

Above, the symbols Ls,Gs are linear differential operators given by

Ls = ρsAs∂
2
t − Ts∂2xs + EsIs∂

4
xs + 2ρsAsσ

(w)
s ∂t − 2ρsAsτ

(w)
s ∂t∂

2
xs

Gs = ρsAs∂
2
t − EsAs∂2xs + 2ρsAsσ

(ζ)
s ∂t

In the equations, the transverse and longitudinal displacements are given as ws(t, xs) and ζs(t, xs), re-
spectively. The piano has a total number of S strings, and the index s denotes the sth string. The domain
of definition of the string is xs ∈ Ds = [0, Ls], where Ls is the length of the unstretched string. The sym-
bols ∂t, ∂xs indicate partial derivatives along t, xs respectively. Constants appear as: ρs, the volumetric
density; As, the area of the cross section; Ts, the applied tension; Es, Young’s modulus. Loss coefficients
are given as σ(w)

s , σ(ζ)
s , τ (w)s , with the first two being measured in s−1, and the latter being measured in

m2s−1, hence resulting in a wavenumber-dependent loss. The symbols δ(1) represent one-dimensional
Dirac deltas. The symbol B(s,p) represents a forcing term (measured in Newtons) coming from the point-
wise contact of the string with the pth lumped object (i.e. the mallet, or a preparation element). It is
assumed that a total number Ps of such lumped objects is acting on the sth string at any given time, at the
locations x(s,p). Expressions for the B(s,p) terms are detailed in 2.4. Finally, Fw

s , F
ζ
s are the forces exerted

by the bridge on the strings. The bridge is located at x(s,b), and expressions for such forces are given in
2.3.

In view of the energy analysis in Section 3, an inner product and associated norm are given here as

〈a, b〉Ds
,
∫ Ls

0

ab dxs, ‖a‖Ds
,
√
〈a, a〉Ds

, (2)

where a, b are two well-behaved functions defined over Ds.

2.2 Soundboard

Soundboards in pianos are complex engineering systems, whose complete modelling requires a con-
siderable effort [13]. Alternatively, one may record an impulse response from which the modal properties
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of the soundboard may be extracted [2]. In this work, a simplified model of the soundboard is offered,
so as to allow design flexibility, yet maintaining a simple form that can be solved with an efficient modal
approach (see Section 4.2). Similarly to the case of strings, the thickness of the soundboard is such
that higher-order effects induced by the rotations of the cross section can be safely neglected [14], and
hence one may introduce an appropriate model via the orthotropic Kirchhoff plate equations. In Cartesian
coordinates, these are

(
ρpH∂

2
t − Tp(∂2X + ∂2Y ) + 2ρpHχ∂t + [∂2X , ∂

2
Y ]D [∂2X , ∂

2
Y ]T
)
W = −

S∑
s=1

δ(2)(X−X(s))(F
w
s +F ζ

s ) (3)

where the rigidity matrix is defined as

D ,

[
DX DXY

DXY DY

]
=

[
(EXH

3)/(12(1− νXνY )) DXνY + (GH3)/6
DXνY + (GH3)/6 (EYH

3)/(12(1− νXνY ))

]
The flexural displacement of the plate is denoted by W = W (t,X). The plate occupies a rectangular
portion of space, so X , (X, Y ) ∈ A = [0, LX ] × [0, LY ], with LX , LY being the side lengths. Partial
derivatives along X, Y are denoted by ∂X , ∂Y . Constants appear as: ρp, the volumetric density; Tp, the
applied tension at the boundaries; H the thickness of the plate; χ is a loss factor; EX , EY are the Young’s
moduli in the orthogonal X and Y directions; νX and νY are the Poisson’s ratios, and G is the modulus
of rigidity. On the right hand side, the symbol δ(2)(X−X(s)) is a two-dimensional Dirac delta. Each of
the string is attached to the plate at the location specified by X(s). (Do not mistake the string coordinate
xs for the location on the soundboard of the bridge connection of the sth string X(s).) The symbols Fw

s ,
F ζ
s represent the forcing terms (measured in Newtons) transmitted from the strings via the bridge, as per

(1a), (1b). Similarly to the case of strings, an inner product and associated norm can be defined on the
domain of the plate, in the following manner

〈f, g〉A ,
∫ LX

0

∫ LY

0

fg dX dY ‖f‖A ,
√
〈f, f〉A (4)

2.3 Bridge

The bridge is here simply modelled as a combination of linear springs. Each string is connected at
one of its point to the plate, via two linear springs, one for the transverse, and one for the longitudinal
direction, and both inducing a flexural force in the plate, as per (3). In theory, one should set up the
bridge connection at one of the string ends. However, in the discretisation of the string equations given in
4.1, the resulting discrete expressions for the boundary forces present several nonlinear terms, which may
pose a problem when setting the ghost points so to guarantee passivity of the termination. In practice,
one may attach the bridge at an interior point, very close to the string end, and work with fixed boundary
conditions. In any case, the forces Fs, Rs appearing in (1a), (1b), (3) are

Fw
s = −Kw

s ∆w
s , −Kw

s

(
ws(t, x(s,b))−W (t,X(s))

)
(5a)

F ζ
s = −Kζ

s∆ζ
s , −Kζ

s

(
ζs(t, x(s,b))−W (t,X(s))

)
(5b)

where Kw
s , Kζ

s are the transverse and longitudinal elastic constants of the springs of the sth string.

2.4 Hammers and Preparation Elements

Piano hammers are known to play an important role in the production of sound. Realistic sound
synthesis may be realised by considering an appropriate single-sided power law: this model has been
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successfully employed to describe collisions in musical acoustics [15]. The interaction force between a
lumped object and one string may be given as

B(s,p) = dφ(s,p)/dη(s,p) + β(s,p)η̇(s,p) with η(s,p) = U(s,p)(t)− w(t, x(s,p)), (6)

In the above, φ(s,p) represents a potential, depending on η(s,p), which is the length characterising the
amount of compression of the string and the lumped object in contact; U(s,p) is the displacement of the
lumped object, colliding with the string at the location x(s,p); β(s,p) ≥ 0 is a loss factor. A second equation
is needed, to describe the motion of the lumped object. This is

M(s,p)Ü(s,p) = −B(s,p) (7)

Various forms of the potential can be given. For hammers, a particularly useful one is

φ(η(s,p)) =
G(s,p)

α(s,p) + 1
[η(s,p)]

α(s,p)+1
+ with [η(s,p)]+ , 0.5(η(s,p) + |η(s,p)|) (8)

In the above, G(s,p) is a stiffness constant; α(s,p) ≥ 1 is an exponent characterising the collision. The
symbol [x]+ denotes the positive part of x, which is nonzero only if x > 0: this definition is useful to
characterise single-sided forces.

Preparation elements such as rattles are characterised by a length ε(s,p), and the potential is

φ(η(s,p)) =
G(s,p)

α(s,p) + 1
[|η(s,p)| − ε(s,p)]

α(s,p)+1
+ (9)

In this case, a force will be exerted if |η(s,p)| > ε(s,p), resulting in intermittent contact between the string
and the rattle, and generating nonlinear forces. For lack of space, more complex preparation elements
will not be discussed here. These include nonlinear string coupling devices, dampers, etc. See [4, 11].

3. Conservation of Energy of the Continuous Model

In the absence of all dissipation, the prepared piano model described above is conservative. In the
remainder, the indices (s), (p), (b), (t) will denote, respectively, the string, the hammer and preparation
elements, the bridge and the soundboard. Double indices such as (s, p) and (s, b) will denote terms
involving the string plus the hammer/preparation elements and bridge. Now, perform the following steps
in order to obtain an energy balance for the complete system

a) Take an inner product of the form (2) of ∂tws with (1a), ∀s
b) Take an inner product of the form (2) of ∂tζs with (1b), ∀s
c) Take an inner product of the form (4) of ∂tW with (3)
d) Multiply (7) by U̇(s,h)

e) Sum up the scalar equations resulting from steps (a)-(d)
After convenient integration by parts (not shown here for lack of space), one obtains the following energy
balance

d

dt
H = 0 where H =

S∑
s=1

(
H(s)
k +H(s)

pl +H(s)
pnl +H(s,b)

pl +
Ps∑
p=1

(
H(s,p)
coll +H(s,p)

k

))
+H(t)

k +H(t)
pl

(10)
The total energy is written as a sum of various components: the index k denotes a kinetic component, the
index pl denotes a potential giving rise to a linear force, the index pnl denotes a potential giving rise to a
nonlinear force, and the index coll denotes the collision potential. The analytic expressions are
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H(s)
k =

ρsAs
2
‖∂tws‖2Ds

+
ρsAs

2
‖∂tζs‖2Ds

H(s)
pl =

Ts
2
‖∂xsws‖

2
Ds

+
EsIs

2

∥∥∂2xsws∥∥2Ds
+
Ts
2
‖∂xsζs‖

2
Ds

H(s)
pnl =

EsAs − Ts
2

∥∥∥∥(∂xsws)
2

2
+ ∂xsζs

∥∥∥∥2
Ds

H(t)
k =

ρpH

2
‖∂tW‖2A

H(t)
pl =

Dx

2

∥∥∂2xW∥∥2A +
Dy

2

∥∥∂2yW∥∥2A +Dxy ‖∂y∂xW‖2A

H(s,p)
k =

M(s,p)

2
(U̇(s,p))

2

H(s,p)
coll = φ(η(s,p))

H(s,b)
pl =

Kw
s

2
(∆w

s )2 +
Kζ
s

2
(∆ζ

s)
2

where φ(η(s,p)) is as per (8), (9), and where ∆w
s ,∆

ζ
s are as per (5a), (5b). The total energy is non-negative

if EsAs ≥ Ts which is the case for musical strings, and under a suitable choice of boundary conditions.
These are chosen as

ws(t, 0) = ζs(t, 0) = ws(t, Ls) = ζs(t, Ls) = ∂2xws(t, 0) = ∂2xws(t, Ls) = 0 ∀s (11a)
W = ∂2nW = 0 along the boundary of the plate; n is the direction normal to the boundary (11b)

Non-negativity results in boundedness of the norms of the displacements and their derivatives.

4. Discrete Model

In this section, a suitable discretisation of the full system is given. The discrete model will be written
as a hybrid finite difference/modal method, for which suitable stability conditions will be extracted after
an energy analysis.

4.1 Strings

The strings are simulated via the finite difference method. The continuous functions ws(t, xs),
ζs(t, xs) are approximated by grid functions wn,ms , ws(nk,mhs), ζn,ms , ζs(nk,mhs), where the
indices m,n are positive integers, and where k is the time step, and hs is the grid spacing of the sth

string. It is assumed that n ≥ 0 and 0 ≤ m ≤ Ms, and thus the grid spacing hs divides the domain
Ls in Ms equal intervals. Finite difference operators are now introduced. The identity and time shifting
operators are

1wn,ms = wn,ms , et+w
n,m
s = wn+1,m

s , et−w
n,m
s = wn−1,ms (12)

From those, the time difference operators are introduced as

δt+ ,
et+ − 1

k
, δt− ,

1− et−
k

, δt· ,
et+ − et−

2k
, δtt , δt+δt− (13)

Time averaging operators are

µt+ ,
1 + et+

2
, µt− ,

1 + et−
2

, µt· ,
et+ + et−

2
, µtt , µt+µt− (14)

Space shifting operators are defined as

esx+w
n,m
s = wn,m+1

s , esx−w
n,m
s = wn,m−1s (15)

From those, space difference operators are given as

δsx+ ,
esx+ − 1

hs
, δsx− ,

1− esx−
hs

, δsx· ,
esx+ − esx−

2hs
, δsxx , δsx+δ

s
x−, δsxxxx , δsxxδ

s
xx (16)
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Given the definitions vs , δsx−w
n,m
s , zs , δsx−ζ

n,m
s (1) is discretised as

(ρsAsδtt − Tsδsxx + EsIsδ
s
xxxx + 2ρsAsσ

(w)
s δt· − 2ρsAsτ

(w)
s δt·δ

s
xx)w

n,m
s =

EsAs − Ts
2

δsx+
[
(vs)

2(µt·vs) + 2(v)(µttzs)
]

+
Ps∑
p=1

Ip(x(s,p))b(s,p) + Ib(x(s,b))fws (17a)

(ρsAsδtt − EsAsδsxxµtt + 2ρsAsσ
(ζ)
s δt·)ζ

n,m
s =

EsAs − Ts
2

δsx+ [(vs)(µt·vs)] + Ib(x(s,b))f ζs (17b)

where

I◦
(
x(s,◦)

)
=

{
1/hs, m = m◦ = round

(
x(s,◦)/hs

)
0, otherwise

and where b(s,p), fws , f
ζ
s are discrete versions of, respectively, the collision forces B(s,p), and of the bridge

forces Fw
s , F

ζ
s , and given below in 4.3, 4.4.

4.2 Soundboard

Vibrations of the soundboard will be calculated using a modal approach. Thanks to this approach, it
is possible to set the decay times mode by mode, thus giving the user extensive control on reverberation.
The modal equations are independent, hence yielding a natural parallel structure which can be easily op-
timised numerically. Moreover, convenient modal pruning strategies can be devised to improve efficiency
even further [16]. Hence

W (t,X) =

RX∑
rX=1

RY∑
rY =1

qrX ,rY (t)srX (X)srY (Y ) where srX (X)srY (Y ) , sin
rXπX

LX
sin

rY πY

LY
, (rX , rY ) ∈ N

Using this expression, which satisfies the boundary conditions (11b), in (3), and projecting onto one
mode by means of the scalar product (4), one gets the modal equation

q̈rX ,rY + Ω2
rX ,rY

qrX ,rY + 2χrX ,rY q̇rX ,rY = −
S∑
s=1

4srX (Xs)srY (Ys)

LXLY ρpH
(Fw

s + F ζ
s ) (18)

where the loss coefficients χ are now mode-dependent. The modal frequencies are

Ω2
rX ,rY

=
Tp
ρpH

[
r2Xπ

2

L2
X

+
r2Y π

2

L2
Y

]
+
DXr

4
Xπ

4

ρpHL4
X

+
DY r

4
Y π

4

ρpHL4
Y

+
2DXY r

2
Xr

2
Y π

4

ρpHL2
XL

2
Y

(19)

A numerical scheme for (18) is obtained immediately after the substitution of the continuous functions
q̈rX ,rY (t) and q̇rX ,rY (t) with their discrete counterparts δttqnrX ,rY , δt·qnrX ,rY , and where the continuous
bridge forces Fw

s , F
ζ
s are replaced by fws , f

ζ
s , given below.

4.3 Bridge

A discretisation of the continuous bridge forces is obtained immediately as

fws = −Kw
s

(
wn,mb
s −

∑
rX ,rY

qnrX ,rY srX (Xs)srY (Ys)

)
(20a)

f ζs = −Kζ
s

(
ζn,mb
s −

∑
rX ,rY

qnrX ,rY srX (Xs)srY (Ys)

)
(20b)

where mb is the index corresponding to the bridge location along the string.
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4.4 Hammers and Preparation Elements

The schemes for the hammers and for the preparation elements will be derived here by means of
energy-conserving finite-difference schemes, following a convenient qudratisation of the nonlinear col-
lision potential yielding, ultimately, a form of the update which does not require an iterative solver (e.g.
Newton-Raphson.) For details, see [10, 11]. This numerical aspect represents an element of novelty
of the current work. Upon the introduction of an auxiliary function ψ(s,p), the hammer force B(s,p) is
approximated by the discrete force b(s,p) given by b(s,p) = gn

(
µt+ψ

n−1/2
(s,p)

)
δt+ψ

n−1/2
(s,p) = gn

(
δt·η

n
(s,p)

) (21) where gn =
∂ψ(s,p)

∂η(s,p)

∣∣∣∣
η(s,p)=η

n
(s,p)

Above, gn is calculated as the analytic derivative of the function ψ ,
√

2φ, and φ is as per (8), (9).

5. Conservation of Energy of the Discrete Model

The particular discretisation given here is conservative. The energy components, discrete counterparts
of (10), are not given here for lack of space. However, conditions for the non-negativity of the energy
function as a whole are given. First, a set of numerical boundary conditions, consistent with (11a), is
given here as

wn,0s = ζn,0s = wn,Ms
s = ζn,Ms

s = δsxxw
m,0
s = δsxxw

n,Ms
s = 0 (22)

Three conditions must be imposed, ∀s:

ρsAsh
4
s −Kw

s k
2h3s − Tsk2h2s − 4EsIsk

2 ≥ 0 (23a)

Kζ
s <

ρsAshs
k2

(23b)

Ω2
rX,rY

4
+

4Rmax(Kw
s , K

ζ
s )

LxLyρpH
<

1

k2
(23c)

The first inequality must be solved via an iterative solver such as Newton-Raphson. The second inequality
gives an upper bound on the choice of the longitudinal stiffness constant, while the last inequality poses
an upper bound on the largest eigenfrequency of the soundboard (R being the total number of modes). If
the three conditions above are satisfied, the discrete energy is guaranteed to be non-negative at all times.
Non-negativity of the discrete energy allows to bound the norms of the grid functions, and hence stability
of the numerical scheme follows.

6. Numerical Experiments and Sound Examples

Sound examples of the prepared piano are presented in the companion web page of this paper, at the
address http://mdphys.org/preparedpiano.html

7. Acknowledgments

The first author wishes to thank the Leverhulme Trust, who is supporting his research with an Early
Career Fellowship.

ICSV26, Montreal, 7-11 July 2019 7

http://mdphys.org/preparedpiano.html


ICSV26, Montreal, 7-11 July 2019

References

1. Giordano, N. Finite difference modeling of the piano, J. Acoust. Soc. Am., 119 (5), 3291–3291, (2006).

2. Bank, B., Zambon, S. and Fontana, F. A modal-based real-time piano synthesizer, IEEE/ACM Trans. Audio,
Speech, Language Process., 18 (4), 809–821, (2010).

3. Chabassier, J., Chaigne, A. and Joly, P. Modeling and simulation of a grand piano, J. Acoust. Soc. Am., 134
(1), 648–665, (2013).

4. Bilbao, S. and Ffitch, J. Prepared piano sound synthesis, Proc. Int. Conf. On Dig. Audio Eff. (DAFx 2006),
Montreal, Canada, September, (2006).

5. Bilbao, S. Conservative numerical methods for nonlinear strings, J. Acoust. Soc. Am., 118, 3316–3327, (2005).

6. Bilbao, S., Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics, Wiley,
Chichester, UK (2009).

7. Lopes, N., Hélie, T. and Falaize, A. Explicit second-order accurate method for the passive guaranteed simula-
tion of port-hamiltonian systems, Proc. 5th IFAC 2015, Lyon, France, July, (2015).

8. Falaize, A. and Hélie, T. Passive Guaranteed Simulation of Analog Audio Circuits: A Port-Hamiltonian
Approach, Appl. Sci., 6, 273 – 273, (2016).

9. Falaize, A., Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios:
Approche par réseau de composants et formulation Hamiltonienne À Ports, Ph.D. thesis, Université Pierre et
Marie Curie, Paris, (2016).

10. Ducceschi, M. and Bilbao, S., (2019), Non-iterative Solvers for Nonlinear Problems: The Case Of Collisions.
Under review, 22nd Int. Conf. on Dig. Audio Eff. (DAFx 2019).

11. Bilbao, S., Ducceschi, M. and Webb, C., (2019), A Large-scale real-time Modular Physical Modeling Sound
Synthesis System. Under review, 22nd Int. Conf. on Dig. Audio Eff. (DAFx 2019).

12. Ducceschi, M. and Bilbao, S. Linear stiff string vibrations in musical acoustics: Assessment and comparison
of models, J. Acoust. Soc. Am., 140 (4), 2445–2454, (2016).

13. Chaigne, A., Cotte, B. and Viggiano, R. Dynamical properties of piano soundboards, J. Acoust. Soc. Am., 133
(4), 2456–2466, (2013).

14. Torin, A., Percussion Instrument Modelling In 3D: Sound Synthesis Through Time Domain Numerical Simu-
lation, Ph.D. thesis, University of Edinburgh, Edinburgh, UK, (2015).

15. Bilbao, S., Torin, A. and Chatziioannou, V. Numerical modeling of collisions in musical instruments, Acta
Acust. United Ac., 101, 155 – 173, (2015).

16. Ducceschi, M. and Webb, C. Plate reverberation: Towards the development of a real-time physical model for
the working musician, Proc. Int. Cong. on Acous. (ICA 2016), Buenos Aires, Argentina, September, (2016).

8 ICSV26, Montreal, 7-11 July 2019


	Introduction
	Continuous Model
	Strings
	Soundboard
	Bridge
	Hammers and Preparation Elements

	Conservation of Energy of the Continuous Model
	Discrete Model
	Strings
	Soundboard
	Bridge
	Hammers and Preparation Elements

	Conservation of Energy of the Discrete Model
	Numerical Experiments and Sound Examples
	Acknowledgments

