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ABSTRACT

Mechanical properties of materials represent, among oth-
ers, one of the most relevant topics in musical acoustics.
Such features can be used to better understand the be-
haviour of musical instruments or to evaluate the impact of
design interventions, and build accurate physical models.
In this regard, this paper aims to introduce an accessible
procedure to estimate the elastic constants of wood using
a thin plate. Compared to previous methods in the liter-
ature, the inverse problem is here formulated linearly in
the rigidity constants, thus allowing a unique solution via
a matrix inverse, and using a least-squares formulation.
The reliability of the method is numerically proven in a
number of examples.

Keywords: experimental modal analysis, finite element
method, elastic constants, wood

1. INTRODUCTION

The problem of determining the elastic constants of wood
emerges in various applications in sound synthesis and
luthiery. Possible applications vary from the virtual
prototyping of musical instruments, allowing for faster
and more efficient product development processes [1],
to model-aided conservation of historical instruments [2]
and to sound synthesis purposes requiring accurate input
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data to generate realistic models [3]. Often, the elastic
constants of woods are approximated from literature [4,5].
Nonetheless, the impact of the material and its elastic con-
stants proved to be both mechanically quantifiable as well
as perceptually noticeable [6,7]. When an accurate esti-
mation of such properties is needed, two main approaches
are defined, namely destructive or non-destructive meth-
ods [8]. While the first represents an invasive analy-
sis method based on static loading tests, non-destructive
methods take advantage of experimental and numerical
approaches. Numerical non-destructive approaches are
further distinguished between forward and inverse ap-
proaches. In the first case, the Finite Element Method
(FEM) is prevalent [8] although recent research advance-
ments focused on the potential of the Rayleigh method
to estimate elastic constants for different boundary con-
ditions [9]. On the other hand, inverse processes mainly
involve the minimization of an objective function which
is normally defined in terms of the difference between ex-
perimental and computed eigenfrequencies [10, 11]. In
this regard, a recent example presented in [12] consisted
of measuring the eigenfrequencies of the plate and using
the theory of free orthotropic plates to determine the elas-
tic constants. Previously, the measurement of three out of
four independent elastic constants was proposed for plates
with free edges [13]. Possibilistic identification has also
been applied in conjunction with FEM to obtain a range of
possible parameter values of a complete instrument [14].
The existing methods for material identification involve
specific boundary conditions, and the determination of
several eigenfrequencies by computation, measurement or
both. The aim of the presented study is to introduce an al-
ternative and accessible methodology allowing retrieval of
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the rigidity constants of orthotropic materials by adopting
a simple experimental measurement setup and by taking
advantage of the least-square problem optimization. As
opposed to other methods in the literature, such as [10],
the problem is here formulated linearly in the rigidity con-
stants, allowing for their direct estimation via a matrix in-
version. Furthermore, the method can be applied to plates
subjected to any combination of boundary conditions, thus
facilitating the experimental setup. Here, a benchmark
study is numerically conducted to validate the experimen-
tal methodology. Error and convergence analyses are per-
formed, showing the ability of the proposed method to re-
trieve the correct rigidity constants within reference error
bounds.

2. METHODOLOGY

An accurate estimation of wood elastic constant is a dif-
ficult task. Complications arise in some cases due to the
complex geometry of the specimen under study, such as
for violin plates [11], or due to a complex material struc-
ture, such as for composite plates [10]. However, if a thin,
homogeneous rectangular plate of the specimen is avail-
able, it is possible to extract the thin-plate rigidity con-
stants with relative ease. This work presents one such
methodology, aimed at integrating various other methods
found in literature [9, 13].The core principle of the pro-
posed method lies in the semi-analytical form of the or-
thotropic thin-plate eigenfrequencies. In measurement or
simulation, these are usually sorted in ascending order, via
the integer m € N = {1,2,...}. The m"™ eigenfrequency
is thus [12]:

4
m m m m m
w™ = \/M(Dxaw +otDyait + 02 Dyyain). (1)

Above, the three rigidity constants (to be estimated) are
denoted by D, D, D,,,. These are defined as:

E 3
D, = x—h, (2a)
12(1 — vgyVys)
E,h3
D, = (2b)
12(1 — vyyVyz)
ayh?
Dy = vye Dy + vgy Dy + G g , (2¢)

where E,, E, are the Young’s moduli, v, vy, are the
Poisson’s ratios, G, is the shear modulus, and h is the
thickness, assumed uniform across the domain. Further-
more, in (1), p denotes the surface density, L, is the side
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length in the longitudinal = direction (assumed here to be
along the grain), o := L, /L, is the aspect ratio, and L, is
the side length in the radial y direction (across the grain).
Leaving aside the geometric constants and the density,
which may be measured trivially, the rigidity constants de-
pend on five unknown parameters (two Young’s moduli,
the shear modulus and two Poisson’s ratios). These may
be reduced to four via symmetry of the compliance matrix,
giving e.g. vy, = vy Ey/E, [15]. The proposed method
allows measuring three such constants, via (2). Given the
small variation of Poisson’s ratios across specimens [5],
one may fix v, according to tabulated values, and there-
fore extract I, I, and G,. Alternatively, an indepen-
dent measurement of any one of the four unknown elastic
constants allows fixing the other three (one such measure-
ment will be briefly discussed later, in Section 3.3).

For rectangular geometries, it is customary to asso-
ciate a pair of modal numbers (p7", ") € N? to each
mode, related to the number of nodal lines in the x and y
directions. A key feature of (1) is that the « coefficients
depend exclusively on the boundary conditions and on the
modal numbers. This results immediately from a dimen-
sional analysis of (1), where such coefficients have the in-
terpretation of scaled (i.e. non-dimensional) wavenum-
bers. One may express such dependency as:

oy’ = oy ' |B), 3)
where B denotes a set of boundary conditions. Simi-
lar definitions hold for oz;”, oz%. As an example, under
simply-supported boundary conditions, a time-harmonic
solution to the orthotropic plate equation is obtained as

[16]:

m mry .
u(z,y,t) = dsin Ha T2 in Mewt, 4
L. L,

and hence:
apt = ()t eyt = (uy)* afy, = 2(u)? (1))

The « coefficients for other boundary conditions are not
readily available, though they may be computed numeri-
cally, as will be illustrated in Section 2.2.

2.1 Problem Formulation

LetP := {L,, Ly, p,h,D,, Dy, Dy,|B} denote a set of
geometrical and material parameters of an experimental
plate. All the parameters are assumed known except for
the rigidity constants. The experimental plate is subjected
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to a set of boundary conditions B, for which the « coeffi-
cients are known either analytically or numerically. After
squaring both sides and rearranging terms, one may ex-
press a vector version of (1) as:

p = Ad, (5)

where
(p)™ := p(w™)?/x", (6a)
(A)"“ = a7, otay o%al,] /Ly, (6b)
d:=[D,,D,,D,,|. (6¢)

Here, m € [1,M], and thus p is M x 1, and A is
M x 3. Assume as well that a set of modal frequen-
cies w™, is obtained experimentally, so to yield a vector
(P)™ := p(&™)2/x*. Then, the vector d of unknown
rigidity constants, approximating d in (5), can be obtained
by minimising:

- 1 - .
e(dp) == 5 Ad - pl3, ™

where || o ||2 denotes the Euclidian norm. This is a linear-
in-parameters equation, solved by the least-squares for-
mula. Thus:

d=(ATA)'(ATp). ®)
This is, in essence, the core of the presented method.
While simple, it will be shown to yield accurate results.

2.2 Numerical calculation of the o coefficients

As mentioned previously, the « coefficients are generally
not known. These, however, can be computed numerically
using a least-square approximation. To that end, assume
to work with a number Ny,.q;, of “training” plates, with
plate parameters ‘" := {L}, Ly, p, h, Dy, Dy, Dy | B},
n € [1, Niyqin]. Note that the sets B differ only in the
side lengths L7, LZ and associated aspect ratios ¢, but
share the same values of all the other parameters, and have
the same boundary conditions. Then, for plate n, one
may label the frequencies according to the correspond-
ing modal numbers (fi,, f1,/), that is: Wit 1y Wity o

w&“ 1) For a given pair on indices (fg, it,/), one may
then write a vector version of (1) as:
q = Da, ©)
where
(@" = (el )2/ (100

(D)™ = [Da, (6")! Dy, (™) Dy} / (L), (10D)
a = [Qg(fhay ty)s Oy (s fy )5 Qg (M )] T (10€)
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Here, n € [1, N], and thus q is N x 1, and D is N x 3.
Assume now to extract a vector ()" := p(&, 5 ))? [
from e.g. finite-element simulation of the Nies: plates
with parameters B". Then, one minimises the error:

e(alq) :=

which is solved by:

Lina -
5Da—allz, (1)

a=(D'D) ' (D7q). (12)
This vector returns an approximation to a in (9). This
operation can be repeated to compute the o coefficients
needed to build the matrix A in (6b), according to the
specified boundary conditions of the experimental plate.

3. NUMERICAL EXAMPLES

The methodology described in Section 2 is tested in a
number of validation experiments. The experiments are
here conducted numerically, so to assess the ability of the
proposed method to retrieve the correct elastic constants.
This is a necessary step before moving on to the exper-
imental case. Two “experimental” plates with a known
set of parameters are created numerically, and the eigen-
frequencies of each plate are used to estimate the rigidity
constants via (8). These are then compared with the input
constants. The “experimental” plate parameters are sum-
marised in Table 1.

Type | p (kg/m®) E. (MPa) E, (MPa) Gy (MPa) vy | 0

Fir 0.225 127-10% 9.3-10> 9.3-10%> 0.45]|1.5
Balsa| 0.100 6.3-10> 3-10%2 3.1-102 0.23|0.8

Table 1. Constants for the “experimental” plates,
wood properties obtained from [5]. o denotes the as-
pect ratios for plates 1 and 2, respectively. The plate
thickness is A = 0.5 mm.

Two different sets of boundary conditions are consid-
ered: simply supported and clamped. For the simply sup-
ported boundary condition, an analytical solution for the o
coefficients exists in the form (4). For the clamped bound-
ary condition, the « coefficients have to be computed nu-
merically. The workflow of the proposed methodology is
summarised as follows:

1. For the experimental plate under study, recover a
set of M « coefficients. Such coefficients, depend-
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ing exclusively on the boundary conditions im-
posed on the experimental plate and on the modal
numbers, may be available analytically, or they
may be computed numerically via (12).

2. Perform a modal analysis of the experimental plate
to measure the M eigenmodes corresponding to the
a coefficients above and use (8) to compute the
rigidity constants.

Note that step 1. above may be entirely avoided if tables
of « coefficients, under various combinations of boundary
conditions, are made available to the tester. The authors
intend to provide such tables in the future. It is also antic-
ipated that the measurement of M = 3 eigenmodes suf-
fices for an accurate estimation of the three rigidity con-
stants.

3.1 Simply Supported boundary conditions

In the following, a plate with simply supported edges is
considered. While the o coefficients are also known an-
alytically in this case, via (4), they will nonetheless be
computed using (12) with a set of plates, and the result
fed into (8) to extract the rigidity constants. This serves as
a useful benchmark test for the current methodology.

Type |p (kg/m®) E,. (MPa) E, (MPa) Gy (MPa) vay
Sitkasp.| 0.195 116-10*> 9.10° 7.5-10° 037

Table 2. Thin-plate elastic constants for the “train-
ing” plates in 757 used to calculate the o coefficients
in the simply-supported case. Values are typical of
Sitka spruce (Picea sitchensis) obtained from [5].
The plate thickness is A = 0.5 mm.

A number Ny.q;n = 16 of plates is used to define
training set 1 (7S1). The side lengths L., L, of such
plates are obtained as all the possible combinations of the
set {0.1,0.53,0.97,1.4} m. The other elastic and geo-
metric constants for 7SI are reported in Table 2. Using
such material and geometrical parameters, the eigenfre-
quencies of all 16 plates are computed analytically via (4).
Then, the corresponding « values are computed via (12),
for (ug,py) € 10,9]. Successively, the modal frequen-
cies of the two “experimental” plates from Table 1 are
computed, using the closed-form solution (4). The least-
square procedure (8) is run to retrieve the elastic constants.
These can be now compared to the input elastic constants

10™ Convention of the European Acoustics Association
Turin, Ttaly « 11" — 15" September 2023 « Politecnico di Torino

of the “experimental” plates reported in Table 1. An abso-
lute error of the order of 10~!! for both plates is recovered
between the computed and input elastic constants.

3.2 Clamped boundary conditions

In a second test case, a plate with fully clamped edges
is considered. Contrary to the simply-supported case,
neither the eigenfrequencies nor the « coefficients are
available in closed form. Hence, they can only be re-
covered numerically. The same set of test plates 7.5/
defined in Section 3.1 is initially used. To check the
assumption that the o coefficients only depend on the
modal numbers, but not on the geometrical or mate-
rial properties, two more training sets are defined here
(TS2 and TS3). These present different side lengths
L, =1L, ={05,0.77,1.03,1.3} mand L, = L, =
{0.5,0.8,1.1,1.4} m for TS2 and TS3, respectively, as
well as different material parameters, summarised in Ta-
ble 3. COMSOL 6.0 is used for the calculation of the

TS1 and TS3

p (kg/m?) E, (MPa) E, (MPa) G, (MPa) v,
0.195 116-10° 9-10° 7.5-10% 0.37
E. (MPa) Gy. (MPa) G.. (MPa) 1y,  Va
5-10* 0.39-10% 7.2-102 043 047

752

p(kg/m?) E, (MPa) E, (MPa) G, (MPa) v,
0225 127-10° 9.3-10* 9.3-10% 045
E. (MPa) G- (MPa) Go. MPa) vy Vg
4.8-10* 9.3-10° 7.5-10° 060 0.50

Table 3. Thin and thick plate elastic constants for
the “training” plates (used in the calculation of the
a coefficients of a fully clamped plate). The plates’
thickness is h = 0.5 mm for all plates.

eigenfrequencies of the training plates from each of the
three 7Ss. Note that Table 3 reports the thick-plate con-
stants as well as the thin-plate ones, as COMSOL requires
the specification of all these. However, since the plate are
simulated with a very small thickness (h = 0.5 mm), it
can be assumed that the thick-plate constants will have a
negligible influence on the computation of the « coeffi-
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Figure 1. Relative differences in eigenfrequency for
a fully clamped orthotropic plate. Predefined-only
meshes ranging from coarser to extremely fine were
used in COMSOL to conduct this study.

cients. The point of selecting such a small A is to min-
imise the thick-plate effects during benchmarking. The
predefined extremely fine mesh in COMSOL was used at
this stage to guarantee reliable results. A quick check on
the convergence of the eigenfrequencies was conducted
with respect to mesh refinement for the first modes with
indices (g, tty) € [0,2]. To this end, a plate from 751
with an aspect ratio o = 1 is taken into account. As an il-
lustrative example, Figure 1 reports the convergence study
on a square plate with side lengths of 1.4 m x 1.4 m. As
reported in Figure 1, by employing the highest number
of elements given by the extremely fine mesh, the relative
change in eigenfrequencies is reached up to 0.001 Hz (i.e.
eigenfrequencies converge up to two decimal places) for
the lowest-order modes. On the other hand, the change at
higher-order modes increases up to 0.01 Hz (i.e. eigen-
frequencies converge up to one decimal place). Thus, a
maximum error equal to 0.01 Hz is assumed in the eigen-
frequency calculation.

The calculation of the « coefficients is now performed
as per (12), using all three training sets. The results are
displayed in Figure 2 where the average values for such
coefficients are reported, together with the deviation. The
deviation is seen to increase for higher modal numbers, as
the error in the calculation of the corresponding modal fre-
quencies is higher. The « coefficients from the three train-
ing sets and from an additional set obtained by averaging
are now used to obtain various estimates of the rigidity
constants, via (8). It is interesting to check how the er-
ror on the computed constants changes according to the
size of A in (8). This is done in Figure 3, where subsets
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Figure 2. Average « coefficients and deviations, un-
der fully clamped boundary conditions. ’x’ marker:
oz, "L marker: oy, "0’ marker: o,

of the available « coefficients, denoted G,n, n={1, 2, 3},
are used for the calculation of the rigidity constants. Here,
Gn contains the first 3n coefficients, out of the nine avail-
able. It can be seen that for all the evaluated groups of
constants G,n, errors are the smallest for G, 1. Further-
more, the error depends on the test plate, and on the train-
ing set used to compute the « coefficients. In particular,
the largest errors are found when computing the « coeffi-
cients by using 7S/. Instead, for 7S2 and TS3, the errors
are of a similar order. The dependence of the error on the
size of A is to be attributed to the error on the estima-
tion of the eigenfrequencies themselves, and to the prop-
agation of such error via the least-square procedure. Fur-
ther investigation is underway in this sense. Results from
G, 1 are summarised in Table 4, highlighting the accuracy
achievable with the proposed methodology.

3.3 Independent measurement of I,

With the proposed methodology, it is possible to obtain
three out of the four thin plate elastic constants. An inde-
pendent measurement of any one of the elastic constants
is thus necessary to estimate all four uniquely. One such
experiment is briefly described here. Consider a bar with
free edges, where the z axis is stretched along the bar. It is
known that the m™ longitudinal modal frequency satisfies:

wm: V ET/Q ’Ym7

where o is the volume density, and ™ := mwx/L,. Fig-
ure 4 reports the frequency response of a metal bar, hit
with an impulse hammer at one end and measured with
an accelerometer placed at the opposite end. The peaks
corresponding to the longitudinal bar motion are clearly
visible, and a best fit of model (13) allows to extract the

13)
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Figure 3. Error% for rigidity constants D, (vertical
lines), D,, (crossing lines) and D, (horizontal lines)
obtained by employing the « values from each TS
and the « coefficients averaged over the three 7Ss,
under fully clamped boundary conditions. Rigid-
ity constant results for G, 1, G,2 and G, 3 are esti-
mated by using the “experimental” eigenfrequencies
and the related modal shapes with indices (1, fty)
up to (0,2), (1,2) and (2,2), respectively.

longitudinal speed of sound, v/ FE, /o, and, thus, Young’s
modulus. The same experiment may be repeated on a bar
cut from the same wood specimen of the orthotropic plate
under study.

4. DISCUSSION

The numerical examples in Section 3 demonstrate the fea-
sibility of the proposed methodology for obtaining the
rigidity constants under different boundary conditions.
The results shown suggest that only three modes of the
investigated experimental plate are required to achieve
a fairly accurate estimate of the material’s rigidity con-

10™ Convention of the European Acoustics Association
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Experimental plate 1
Rigidity (x10~°) Target | TS/ TS2 TS3 AVG.

D, 134 ‘ 133 134 134 134
D, 9.83 ‘ 9.99 982 9.82 9.88
Dy 47.6 ‘ 46.1 47.7 475 471

Experimental plate 2
Rigidity (x107°%) Target | TSI TS2 TS3 AVG.

D, 6.73 | 6.58 6.71 6.70 6.66
D, 3.21 | 328 3.17 3.17 3.21
Day 144 | 135 141 141 139

Table 4. Results of the proposed methodology. The
table includes the target and the computed rigid-
ity constants for the two “experimental” plates con-
sidered, under clamped boundary conditions, using
group G, 1. Values are scaled by 1073,

stants. This means that the estimation of the constants can
be done with a simple measurement setup giving the first
three mode frequencies, their corresponding nodal lines
and a least-square procedure. As opposed to other estab-
lished methods in the literature, the proposed methodol-
ogy is not bound to a restricted set of boundary condi-
tions, nor is it reliant on specific mode shapes to work.
The rigidity constants here can be estimated by knowl-
edge of any three modal frequencies and corresponding o
coefficients. Nonetheless, several sources of uncertainty
regarding the methodology need to be further analysed.
First, the choice of the dimensions of the plates used for
the estimation of the « coefficients appeared to have an
impact on the accuracy of the final estimated elastic con-
stants. Specifically, results achieved by considering 7S/
which was characterized by narrower rectangular-shaped
geometries than 7.S2 and 7'S3, lead to a less accurate final
estimation of the elastic properties of the “experimental”
plates. Similarly, as « coefficients associated with higher-
order mode shapes are divergent, a thorough analysis of
the convergence of the coefficients is needed. These is-
sues may be tackled by analysing the error propagation
in the least-square optimisation, and by using variants of
such methodology [17]. Additionally, further investiga-
tions supported by FEM simulations will be conducted in
order to assess the variation in the alpha coefficient rel-
ative to changes in thickness. Such a tolerance analysis
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Figure 4. Modal analysis of a longitudinal bar. The
bar’s length L, is 0.45 m. Top: frequency response
function. Bottom: best fit. The speed of sound is
here calculated as \/E, /o = 5704 m-s~1.

Figure 5. EMA measurement setup for a rectangular
guitar tonewood under fully-clamped conditions.

will help to account for typical standard deviations ob-
served when using standard mechanical equipment (e.g.
sanding devices). Although this paper solely considers
numerical data, experimental modal analysis (EMA) mea-
surements are currently being conducted by the authors
in order to test the proposed methodology with real-life
case scenarios. An example is found in Figure 5 which
shows a measurement setup used to extract the experimen-
tal data through impulse response (IR) measurements. In
this case, an exciter is used to excite a clamped rectangu-
lar tonewood for a guitar plate by injecting an exponential
sine sweep (ESS) into the system. The resulting audio
data is recorded by a sound-pressure microphone. After
post-processing the recorded data, an IR can be collected
and analyzed [18, 19]. In such measurements, the effect
of the thickness of actual instruments’ soundboards (= 3-

10™" Convention of the European Acoustics Association
Turin, Ttaly « 11" — 15" September 2023 « Politecnico di Torino

4 mm) on the methodology will also be studied. Finally,
note that while simply-supported and clamped boundary
conditions were considered here, one may apply the pro-
posed method to any set 53 of suitable boundary condi-
tions, after an appropriate estimation of the « coefficients.
These may in fact be collected and tabulated and made
readily available to the tester.

5. CONCLUSIONS

This paper introduced an alternative solution to estimate
orthotropic elastic constants of simple rectangular geome-
tries under different boundary conditions through a least-
square optimisation. The developed procedure was first
tested for simply-supported plates for which an analytical
solution to the motion equation is known. Results confirm
the accuracy of the process and further investigations are
carried out to compute the elastic constants of rectangular
wooden plates with clamped boundary conditions. In such
cases, different considerations are observed:

* Depending on the geometries used in the 7'Ss to
compute the « coefficients, different errors were
observed in the estimation of the elastic constants.

e variations in the « coefficients increased with
higher-order modal shapes, leading to a less pre-
cise estimation of « values.

 accurate estimates of the rigidity constants (with
absolute errors below 5%) can be achieved with
just three known modal shapes and the correspond-
ing eigenfrequencies of the experimental plate.

The variability in the estimation of the rigidity constants
has to be attributed to the propagation of the error in the
least-square procedure. This may be adjusted in various
ways, for instance via regularisation [17]. A study of op-
timal conditions for optimisation is therefore envisaged.
Finally, the application of this methodology to laboratory
tests is currently underway. Since this method allows the
extraction of the rigidity constants under any combination
of boundary conditions, multiple estimates may be per-
formed on the same test bench, improving the reliability
of the final results.
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