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ABSTRACT

The motion of a bowed string is a typical nonlinear phenomenon
resulting from the interaction of the bow and the string via a fric-
tion force. The system can be described using suitable differential
equations, where the friction force depends on the relative speed
between the bow and the string. The bow supplies the energy
that sets the string into motion, while dissipating part of it in a
nonlinear feedback. Numerically, a sound implementation of the
energy balance is necessary to ensure stability of the time step-
ping schemes. Implicit discretisations are known to yield energy-
consistent algorithms, though they most often rely on the use of
iterative nonlinear root finders such as Newton-Raphson. This car-
ries several implementation issues, including variable operation
cost, constraints on the time step to ensure existence and unique-
ness, and the problem of choosing appropriate halt conditions. Re-
cently, a novel method was developed, in the context of virtual-
analogue simulation, allowing to solve nonlinear systems of or-
dinary differential equations non-iteratively. In this paper, it is
proposed to extend these algorithms to bowed string simulation.
Case studies of a mass-spring system and an ideal string coupled
with a bow are investigated. Finally, the musical case of a bowed
stiff string with loss is considered. When semi-discretisation is
performed using a modal approach, a fast algorithm is available,
yielding compute times below real-time for typical musical strings.

1. INTRODUCTION

Bowed strings simulation is a topic of longstanding interest in mu-
sical acoustics. Initial observations on bowed string motion were
conducted by Helmholtz in the 19th century [1] and later extended
by Raman [2], who provided the first mathematical theory. These
studies laid the groundwork for many successive works [3]. A cru-
cial part of the bowed string model lays in the law that governs the
excitation force. It is common to consider the excitation to hap-
pen at a single point, and the force to be a frictional law dependent
only on the relative velocity between the string and the bow. Under
these assumptions, the force experienced by the string due to the
bow is represented by a characteristic friction curve, as a function
of the relative velocity. One common such curve is due to Smith
and Woodhouse, obtained from experimental observations of the
motion of a mass on a rosin-coated conveyor belt [4]. This curve is
sometimes called the “classical” friction curve in this context [5],
since analogous curves had in fact been used in several previous
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works, such as those by Friedlander [6], McIntyre and Woodhouse
[7], and others. In the context of numerical simulation, curves with
a “soft” characteristic have been proposed [8]: these are the curves
considered in this work.

Numerically, bowed string simulation has been performed us-
ing digital waveguides [9, 10, 11, 12], as well as time domain
methods [13]. Because of the strong nonlinear behaviour of the
bow-string interaction, the numerical stability of the underlying
time-stepping procedure must be ensured: one possible approach
is to make use of energy methods [14, 8], encapsulating a notion of
passivity. Extensive work on bowed string simulations using finite
difference (FDTD) methods have been carried out by Desvages
[13]. There, a complex model is developed, taking into account
two directions of polarization of the string, the “classical” friction
curve by Smith and Woodhouse [4], and the player’s finger pres-
sure on the string. Numerically, a passive energy balance ensuring
stability is obtained using a fully implicit numerical scheme, re-
lying on the use of iterative routines (Newton-Raphson). These
are generally computationally expensive and are serial in nature.
Other theoretical and computational issues emerge, such as vari-
able cost at each time step and choices regarding appropriate tol-
erance thresholds. Furthermore, existence and uniqueness of the
numerically-computed solutions is generally not ensured [15].

Recently, a numerical method was proposed [16, 17], in the
context of virtual-analogue systems, employing a linearly-implicit
time-stepping procedure for the solution of nonlinear ordinary dif-
ferential equations (ODEs). This method is non-iterative, in that
the update is expressed as one single linear system. Besides the
obvious computational advantage [16], this method avoids entirely
the issues typical of iterative procedures.

In this paper, an extension of the non-iterative method pre-
sented in [16, 17] is given. First, the bowed string model is ex-
pressed as a first-order-in-time system of partial differential equa-
tions (PDEs). Then, semi-discretisation in space is performed in
order to reduce the problem to a system of nonlinearly coupled
ODEs, in a way amenable to the structure of a Port-Hamiltonian
system (PHS) [18, 19, 20]. Semi-discretisation is performed in
two ways, using 1): a finite-difference form and 2): a modal form.
The non-iterative time-stepping procedure from [16, 17], is then
adopted to advance the equations in discrete time. It will be shown
that the modal form presents an efficient update, expressed as a
block-diagonal matrix plus a rank-1 perturbation, yielding a fast
inversion.

The paper is structured as follows. Section 2 presents the case
study of a bowed mass, including a comparison between various it-
erative and non-iterative discretisations. Section 3 considers a dis-
tributed resonator described by the simple wave equation coupled
to a bow. Various numerical approaches are proposed, including a
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Figure 1: Various friction characteristics: (a) Coulomb dry fric-
tion, with equation ϕ(η) = sgn(η)ϵ, with ϵ = 1/2; (b) the "clas-
sical" curve by Woodhouse and Smith [4], with the form ϕ(η) =

sgn(η)(0.4e−|η|/0.01+0.45e−|η|/0.1+0.35); (c) the reconstructed
curve by Galluzzo [5], defined by ϕ(η) = sgn(η)(0.4e−|η|/0.01 +
0.35); (d) the continuous approximation defined in equation 2,
with a = 10 (dashed) and a = 100 (solid).

modal solution with a fast update. In section 4 the musical case of
a stiff string with loss is presented.

2. CASE STUDY: THE BOWED MASS

Before examining the distributed string-bow system, it is conve-
nient to start with the simpler case of a system with two degrees
of freedom: a mass-spring excited by a bow. The system can be
described by two coupled ODEs [8],

ü = −ω2
0u− FBϕ(η) , η = u̇− vB . (1)

Here, u = u(t) : R+
0 → R is the displacement of the mass in m,

depending on time t ≥ 0; ω0 is the angular frequency of the os-
cillator, in rad/s; η(t) is the relative velocity between the bow and
the mass in m/s. The function vB(t) (assumed known) is the bow
velocity, in m/s, while FB(t) > 0 (also known) is the bow force
normalised by the object’s mass. The function ϕ = ϕ(η) : R → R
is a dimensionless friction coefficient, expressed as a function of
the relative velocity only. As mentioned in the introduction, var-
ious choices are available, some of which are shown in Figure 1.
Here, the “soft” friction characteristic proposed in [8] (Chapter 4)
is used (panel (d) of Figure 1). It may be expressed as:

ϕ(η) =
√
2a η e−aη2+1/2, (2)

where a is a free parameter. Note that ϕ satisfies

η ϕ(η) ≥ 0, lim
|η|→0

ϕ(η)/η =
√
2ae < ∞ . (3)

The first property in (3) is referred to as sector-boundedness, here
to sector [0,∞]. Both these properties will be used in the non-
iterative numerical schemes presented below.

2.1. Energy Balance

An energy balance can be obtained by multiplying the first equa-
tion in (1) by u̇. One gets

Ḣ = −FB(η + vB)ϕ (η) (4)

where the energy H (scaled by mass) is

H (u, u̇) =
u̇2

2
+

ω2
0u

2

2
, (5)

In the zero-velocity case (vB = 0), owing to the first property in
(3), one has: Ḣ ≤ 0, therefore the system dissipates.

2.2. The Bowed Mass as a First-Order System

As anticipated above, it is convenient to formulate the equation of
motion (1) in first-order form. First, it is necessary to introduce the
generalised coordinate q and momentum p:

q = ω0u, p = u̇. (6)

Note that p is momentum normalised by mass, with dimensions of
velocity. The energy takes the form:

H(q, p) =
p2

2
+

q2

2
. (7)

Therefore, equation (1) becomes

ẋ = J∇H − fFBϕ(η), η = f⊺x− vB . (8)

Here:

x =

[
q
p

]
, J =

[
0 ω0

−ω0 0

]
, f =

[
0
1

]
, (9)

and the gradient can be expressed as ∇ = [∂/∂q, ∂/∂p]⊺. Thus:

∇H =
[
q, p

]⊺
. (10)

An energy balance can be obtained by multiplying (8) on the left
by (∇H)⊺. Since J is skew-symmetric, and owing to the chain
rule Ḣ = (∇H)⊺ẋ, one obtains in the zero-velocity case

Ḣ = −FB p ϕ(p) ≤ 0, (11)

that is, the system dissipates, and is therefore passive. System (8)
has the structure of a PHS, including energy storage elements, and
dissipation induced by the bow [18, 19, 20]. In the continuous
case, system (8) and equation (1) are entirely equivalent: one can
be obtained from the other. Nevertheless, in the discrete case they
will be discretised using distinct methods, as described below.

2.3. Time Difference Operators

Systems (1) and (8) will be now integrated using suitable energy-
passive numerical schemes. Time is discretised with a time step k,
yielding a sample rate fs = 1/k. Note that k here denotes the time
step, since h will be used to denote the grid spacing in the finite
difference schemes for the bowed string, in Section 3.2. This is
the notation used in various textbooks, see e.g. [8, 21]. Then, one
defines the time series un, which represents an approximation to
the continuous function u(t) at time step t = nk, where n ∈ N is
the time index. The basic operators in discrete time are the identity
and shift operators, defined as:

1un = un, e+u
n = un+1, e−u

n = un−1. (12)

From these, the time difference operators can be defined as:

δ+ =
e+ − 1

k
, δ− =

1− e−
k

, δ· =
e+ − e−

2k
. (13)
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These are the forward, backward and centred operators respec-
tively. The second-difference operator is obtained by combining
the the operators above:

δ2 = δ+δ− . (14)

Finally, averaging operators can be written as:

µ+ =
e+ + 1

2
, µ− =

1 + e−
2

, µ· =
e+ + e−

2
. (15)

2.4. Time Domain Discretisation of the Bowed Mass

Three schemes are now presented, the first discretising the second-
order system (1), and the other two discretising the first-order sys-
tem (8).

2.4.1. Iterative Discretisation of the Second-Order System

A possible discretisation of equation (1) is:

δ2u
n = −ω2

0u
n − Fn

Bϕ(δ·u
n − vnB), (16)

where Fn
B , vnB are time series representing the bow force and ve-

locity, allowed to vary over time. A discrete energy balance, in the
zero-velocity case (vB = 0), is obtained by multiplying of the left
by δ·u

n:
δ+h

n−1/2 = −Fn
B δ·u

nϕ(δ·u
n) ≤ 0, (17)

that is, the discrete system dissipates. The discrete energy takes
the form:

hn−1/2 =
(δ−u

n)2

2
+

ω2
0u

net−u
n

2
, (18)

and this is non-negative under the condition that

k < 2/ω0, (19)

see e.g. [8] (Chapter 3) for a proof. Note that such condition
arises solely as a consequence of the discretisation of the linear
part, since the nonlinear dissipation is guaranteed in (16). Denot-
ing r ≜ δt·u

n, b ≜ 2un−1 − 2un + ω2
0k

2un, scheme (16) can be
written as

2kr + b+ k2Fn
Bϕ(r − vnB) = 0, (20)

which is a nonlinear algebraic equation in r, solvable with a non-
linear root finder such as Newton-Raphson. Notice that a condition
on existence and uniqueness of the solution of (20) must be given,
and this appears as a further constraint on the time step k, see [8]
(Chapter 4).

2.4.2. Iterative Discretisation of the First-Order System

A possible discretisation of the first-order system (8) can be ob-
tained as follows

δ+x
n = J▽hn+1/2 − fFBϕ(µ+η

n), ηn = f⊺xn − vnB . (21)

Here, the discrete energy is given as:

h(qn, pn) ≜ hn =
(pn)2

2
+

(qn)2

2
. (22)

In (21), the form of the discrete gradient ▽hn+1/2 can be obtained
from a suitable energy-conserving discretisation, see e.g. [19, 22,

23]. In this respect, the partial derivative of h with respect to q is
given as:

δq+h(q
n, pn) =

h(qn+1, pn)− h(qn, pn)

qn+1 − qn
= µ+q

n. (23)

The partial derivative with respect to p can be defined analogously.
Therefore, one has:

▽hn+1/2 ≜ [δq+h
n, δp+h

n]⊺ = µ+

[
qn, pn

]⊺
= µ+x

n. (24)

Note that, under such choice for the discrete gradient, scheme (21)
is equivalent to the midpoint method. The discrete balance is ob-
tained by multiplying on the left (21) by ▽h⊺, to get (in the zero-
velocity case)

δ+h
n = −Fn

B µ+p
n ϕ(µ+p

n) ≤ 0, (25)

that is, the system dissipates. Note that, in this case, the scheme
is uncoditionally stable, by virtue of the non-negativity of the dis-
crete energy. The update equation of (21) is(

I

k
− J

2

)
xn+1 −

(
I

k
+

J

2

)
xn + fFn

Bϕ(µ+η
n) = 0, (26)

which is a nonlinear algebraic system (following the implicit defi-
nition of xn+1 appearing in the argument of the nonlinear function
ϕ). An iterative root finder is therefore necessary in this case.

2.4.3. Non Iterative Discretisation of the First-Order System

An alternative discretisation of the first-order system (8) is now
given, and adapted from [16, 17]. There, a family of non-iterative
schemes is presented in the context of stiff nonlinear ODEs mod-
elling audio circuits. These schemes yield good numerical be-
haviour without the need for iterative techniques, as will be seen
in the numerical examples below. These are:

σ(P )(xn)δ+x
n = J▽hn+1/2 − fFn

Bdnµ+η
n. (27)

Here, σ(P )(xn) is a factor taking the form of a perturbation ex-
pansion. This can be set so to yield a (P + 1)-accurate truncation
error. The first two terms are given explicitly as

σ(0) = I, σ(1) = I+
kFB

2
(λn − dn)ff⊺, (28)

where
λn ≜ dϕ/dη

∣∣
η=ηn , dn ≜ ϕ/η

∣∣
η=ηn . (29)

Note that both λ and d are well-defined, owing to properties (3).
The definition of η is as in (21), and the discrete gradient ▽hn is as
in (24). Using P = 1, one obtains a second-order accurate scheme
of the form

Anxn+1 = Bnxn + fFn
Bdnµ+v

n
B , (30)

where

An =
I

k
+

FBλ
n

2
ff⊺ − J

2
, Bn =

I

k
+ FB

(
λn

2
− dn

)
ff⊺ +

J

2
.

Note that both An, Bn are computed using values from previous
time steps, hence the update xn+1 in (30) is expressed as the solu-
tion of a single linear system. Numerical passivity of schemes (27)
is harder to get to, compared to the iterative discretisations shown
above. Partial results are available in [17], but are not included
here for brevity. However, the numerical tests presented below
allow to gather some insight on the stability properties of these
schemes, compared to the iterative discretisations shown above,
and to a standard explicit integrator (Forward Euler).
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Figure 2: Comparison between the different bowed mass simula-
tions under two choices of pressure FB , using the friction function
(2). In all cases it was set: a = 100, f0 = ω0/2π = 100 Hz,
vB = 0.2 m/s. The acronyms indicate: the Forward Euler integra-
tor (FE), the second-order iterative scheme (SOIT), the first-order
iterative scheme (FOIT) and the first-order non-iterative scheme
(FONIT). "Ref." indicates the reference solution.

2.5. Solvers Comparison

Figure 2 displays the results computed with different solvers un-
der two choices of FB . A reference solution was obtained running
scheme (16) with a sample rate fs = 30·44100 Hz. Then, schemes
(16), (21) and (27) were run using a sample rate fs = 2 · 44100
Hz, and the error was computed as the difference between the out-
puts of these schemes and the reference solution. Newton-Raphson
was run with a threshold of 10−9. A standard explicit integra-
tor, Forward Euler (see e.g. [21]), was also included in the test.
For the lower bowing pressure (FB = 100), Forward Euler yields
an error three orders of magnitude larger than the other schemes.
More strikingly, for the larger bowing pressure (FB = 4000) For-
ward Euler displays a clear instability. On the other hand, note that
the non-iterative scheme (27) displays robust numerical behaviour,
comparable to that of the iterative schemes.

3. CASE STUDY: THE IDEAL STRING

In this section, the case of a bowed string is considered, employ-
ing a simple model for the string in the form of the ideal 1-D wave
equation. As for the case of the bowed mass, this section is in-
tended as a useful test case, here including a distributed resonator.
Important features for realistic sound synthesis, such as the string’s
stiffness and losses, are neglected here, but will be included below
in the case study of Section 4. The string-bow system is described

by the following:

∂2
t u = c2∂2

xu− FBδ(x− xB)ϕ(η), (31a)

η =

∫ L

0

δ(x− xB)∂tu dx− vB . (31b)

Here, u = u(x, t) : [0, L]×R+ → R is the function describing the
displacement of a string of length L. The value c is the wave speed
on the string and η = η(t) ∈ R is the relative velocity of the bow
and the string at the bowing location xB . Notice that the notation
∂j
t , ∂j

x indicates the jth partial derivative of u with respect to t
and x, respectively. An energy balance can be obtained by taking
the L2 inner product of (31a) with ∂tu over the domain [0, L].
If energy-passive boundary conditions are considered, in the zero
input-case (vB = 0) dissipation is guaranteed. Here, Dirichlet
boundary conditions are used; therefore: u(x, t) = 0 at x = 0 and
x = L. After integration by parts (see e.g. [8] (Chapter 6)), one
obtains in the zero-velocity case:

d
∫
H dx

dt
= −FB ∂tu(xB , t)ϕ(∂tu(xB , t)) ≤ 0, (32)

where the energy density is:

H(∂xu, ∂tu) =
1

2
(∂tu)

2 +
c2

2
(∂xu)

2. (33)

3.1. The Bowed String as a First-Order System

As in the case of the mass, it is convenient to express the system in
first-order form. First, one defines the generalised coordinate and
momentum:

q = c ∂xu, p = ∂tu. (34)

The energy density now takes the form:

H =
p2

2
+

q2

2
. (35)

The equations of motion in first-order form then are:

∂x

∂t
= J∇H− ζFBϕ(η), (36a)

η =

∫ L

0

ζ⊺x dx− vB , (36b)

where:

x =
[
q, p

]⊺
, ζ =

[
0, δ(x− xB)

]⊺
, J = c

[
0 ∂

∂x
∂
∂x

0

]
.

The gradient is ∇ = [∂/∂q, ∂/∂p]⊺. The energy balance is ob-
tained by multiplying (36a) on the left by ∇H⊺, and integrating.
Considering Dirichlet boundary conditions, and using the identity:∫ L

0
∇H⊺ ∂x

∂t
dx =

d
∫
H dx

dt
, one obtains again the energy balance

(32).

3.2. Spatial Difference Operators

Spatial difference operators are now introduced. First, the do-
main of the string is divided into M subintervals of length h,
the grid spacing. This yields M + 1 discretisation points, in-
cluding the end points. All throughout, boundary conditions of
fixed (i.e. Dirichlet) type will be considered. therefore, the end
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points of the domain need not be stored or updated. The contin-
uous functions u(x, t), q(x, t), p(x, t) appearing in (31) and (36)
are all approximated by grid functions u(t), q(t) and p(t), which
are (M − 1) × 1, M × 1 and (M − 1) × 1 column vectors, re-
spectively. Note that q is spatially interleaved with respect to u
and p. The difference matrix D− acting on the state vector u can
be defined as

D−u =
1

h
([u⊺, 0]− [0,u⊺]). (37)

Note that, since fixed boundaries were considered, this matrix is
rectangular, with dimensions M × (M − 1). The matrix D+ can
be simply defined as D+ = −(D−)⊺, and is a rectangular matrix
of dimensions (M − 1) × M . The 1-D Laplace operator is then
obtained by composing the difference matrices: D2 = D+D−,
and is a square matrix of dimensions (M−1)×(M−1), satisfying
the Dirichlet conditions.

3.3. Semi-Discrete Formulations of the Bowed String

3.3.1. Second-Order System

Given the definitions above, a semi-discrete version of (31a) is
obtained immediately as

ü = c2D2u− ξFBϕ(η) (38a)
η = hξ⊺u̇− vB (38b)

where ξ is any suitable discrete version of the Dirac delta function,
obtained for instance via Lagrange interpolants, and represented as
an (M − 1)× 1 column vector.

3.3.2. First-Order System

The generalised coordinates and momenta can be written as:

q = cD−u, p = u̇. (39)

The energy is now:

H(q,p) =
p⊺ p

2
+

q⊺ q

2
. (40)

The equations of motion in semi-discrete form take the form:

ẋ = J∇H − ζFBϕ(η), (41a)
η = h ζ⊺ x− vB . (41b)

where

x =
[
q,p

]⊺
, ζ =

[
0, ξ

]⊺
, J = c

[
0 D−

D+ 0

]
, (42)

and note that J a square, skew-symmetric matrix, yielding the form
typical of PHS [19].

3.3.3. Modal Form

As an alternative approach, the continuous equations (31) are now
semi-discretised using a modal expansion. To that end, the system
solution u can be rewritten as a superposition of modal displace-
ments:

u(x, t) =

N∑
i=1

Xi(x)si(t), (43)

where N , the number of modes, is in theory infinite, but for prac-
tical purposes is truncated to a finite integer. Thus, equation (43)
can be rewritten in vector form: u(x, t) = X⊺(x)s(t). For an
ideal string of length L, with Dirichlet boundary conditions, the
mode shapes (eigenfunctions) take the form [8]: Xi(x) =

√
2/L·

· sin(iπx/L). Substituting equation (43) into (31a) and (31b),
multiplying (31a) on the left by X and taking an L2 inner product
over the string length yields the equations that describe the modal
system:

s̈ = −Ω2
0s− FBX(xB)ϕ(η) (44a)

η = X⊺(xB)ṡ− vB . (44b)

Here, Ω0 is a diagonal matrix containing the eigenfrequencies of
the system, which are: ωi = iπc/L, i = 1, . . . , N . In view of a
non-iterative discretisation, it is useful to express the equation of
motion (44a) in first-order form. First, one can define q̃ ≜ Ω0s,
p̃ ≜ ṡ and x̃ ≜ [q̃, p̃]⊺. The energy here takes the form:

H̃(q̃, p̃) =
p̃⊺ p̃

2
+

q̃⊺q̃

2
. (45)

Therefore, equations (44a) and (44b) can be written as:

˙̃x = J̃∇H̃ − ζ̃ FBϕ(η) (46a)

η = ζ̃
⊺
x̃− vB , (46b)

where:

J̃ =

[
0 Ω0

−Ω0 0

]
, ζ̃ =

[
0

X(xB)

]
, ∇H̃ =

[
q̃
p̃

]
. (47)

The string displacement at the desired output position xout can be
obtained by projecting the state vector s(t) onto the corresponding
eigenfunctions; therefore: u(xout, t) = X⊺(xout)s(t).

3.4. Fully-Discrete Formulations of the Bowed String

The semi-discrete formulations (38), (41), (46) are in the form of
nonlinearly coupled systems of ODEs. These can now be discre-
tised in time using the time difference operators defined in Section
2.

3.4.1. Iterative Discretisation of the Second-Order System

Integration of (38) may be performed simply as:

δ2u
n = c2D2un − ξFBϕ(η

n) (48a)
ηn = h ξ⊺δ·u

n − vB (48b)

A discrete energy balance can be obtained by multiplying (48a) on
the left by hδ·(u

n)⊺ [8]. In the zero-velocity case one obtains:

δ+h
n−1/2 = −Fn

B (hξ⊺δ·u
n)ϕ(hξ⊺δ·u

n) ≤ 0, (49)

which is a discrete counterpart of the continuous energy balance
(32). Here, the discrete energy has the form:

hn−1/2 =
h

2

(
(δ−u

n)⊺(δ−u
n) + c2(D−un)⊺D−et−u

n) .
This is a distributed version of the discrete energy obtained for the
mass-spring, in (18). Like before, a stability condition arises as a
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consequence of the explicit discretisation of the linear part. The
energy is non-negative overall if and only if

h ≥ ck, (50)

that is, the CFL condition, see e.g. [8] (Chapter 6). Since the up-
date un+1 appears implicitly as the argument of ϕ in (48a), the
scheme is fully-implicit, and a solution may be found using a suit-
able iterative routine (e.g. Newton-Raphson) in vector form (not
shown here for brevity).

3.4.2. Iterative Discretisation of the First-Order System

Integration of (41) can be performed using the same discretisation
employed in the case of the bowed mass in Section 2.4.2. Hence

δ+x
n = J▽hn+1/2 − ζFBϕ(µ+η

n), (51a)
µ+η

n = hζ⊺µ+x
n − µ+v

n
B (51b)

Here, the discrete energy is

hn =
(pn)⊺ pn

2
+

(qn)⊺ qn

2
, (52)

and thus the discrete gradient is ▽hn+1/2 = [µ+q
n, µ+p

n]⊺.
Note that this scheme is unconditionally stable, since the energy
is non-negative ∀ pn,qn. Scheme (51) is in the form of a nonlin-
ear algebraic system in the update xn+1, with a form analogous to
(26), and hence an iterative root finder is required for its solution.

3.4.3. Non Iterative Discretisation of the First-Order System

A non-iterative integrator for (41) can be obtained using a scheme
analogous (27), that is:

σ(P )(xn)δ+x
n = J▽hn+1/2 − ζFn

Bdnµ+η
n. (53)

Choosing P = 1, one has

σ(1) = I+
kh

2
FB(λ

n − dn)ζζ⊺ (54)

and a second-order accurate discretisation arises [16, 17]. Here,
the definitions of λ and d are as in (29). The discrete gradient and
η are the same as in (51). Isolating the state vector xn+1 in (53)
results in an update equation analogous to (30), that is, a linear
system.

3.4.4. Non Iterative Discretisation of the Modal System

The non-iterative solver can be applied for the integration of the
the modal system 46. As previously, the scheme can be written in
a form analogous to (30), that is:

Ãnx̃n+1 = B̃nx̃n + Fn
Bdnζ̃µ+v

n
B , (55)

with

Ãn =
I

k
+
Fn
Bλn

2
ζ̃ζ̃

⊺− J̃

2
, B̃n =

I

k
+Fn

B

(
λn

2
− dn

)
ζ̃ζ̃

⊺
+
J̃

2
.

It is now shown that the form of the matrix Ãn lends itself natu-
rally to a fast inversion. To that end, define

T ≜
I

k
− J̃

2
=

[
I/k −Ω0/2
Ω0/2 I/k

]
. (56)
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Figure 3: Ideal string simulation under two choices of FB . In both
cases it was set: c = 150 m/s, L = 0.7 m, vB = 0.2 m/s, a = 100.
The input and output positions were, respectively: 0.633 · L and
0.33·L. The acronyms indicate: the second-order iterative scheme
(SOIT), the first-order iterative scheme (FOIT), the first-order non-
iterative scheme (FONIT) and the modal scheme (MOD).

The matrix Ãn is then expressed as the sum of T plus a rank-1
perturbation, invertible using the Sherman-Morrison formula [24]:

(Ãn)−1 = T−1 − Fn
Bλn

2

T−1ζ̃ζ̃
⊺
T−1

1 +
Fn
B
λn

2
ζ̃
⊺
T−1ζ̃

. (57)

Notice that T is block-diagonal; thus, it allows for a fast decom-
position in the form of an block LUD factorisation [25]. One can
write:

T =

[
T11 T12

T21 T22

]
=

[
I 0

T21T
−1
11 I

] [
T11 0
0 χ

] [
I T−1

11 T12

0 I

]
,

(58)

where χ ≜ T22 −T21T
−1
11 T12 is the Schur complement, which

in this case is diagonal, as it results from algebraic operations be-
tween diagonal matrices. This decomposition allows to invert the
matrix T using a few serial operations involving diagonal matri-
ces. Since T only contains constant values, it is possible to com-
pute the factorisation components offline. All these operations al-
low to dramatically reduce the compute time, as shown below.

3.5. Solvers Comparison

Figure 3 shows the string’s output displacement u(xout, t), com-
puted using (48) (SOIT), (51) (FOIT), (53) (FONIT) and (55)
(MOD), under two different values of FB . The schemes were run
at a sample rate fs = 2 · 44100 Hz. As explained in the pre-
vious section, both SOIT and FOIT require the Newton-Raphson
algorithm in vector form, and thus the inversion of the Jacobian
at each iteration: this operation was achieved using Matlab’s own
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backslash function. The tolerance was set to 10−9. Backslash was
also employed for the non-iterative scheme FONIT, whereas the
modal system was solved with the efficient technique described
above. The values of FB yield slightly different types motion.
When FB = 1, the motion is steady, but not Helmholtz-like. Us-
ing a larger value for the bowing pressure, FB = 5, results in a
fully developed Helmholtz motion. The change of motion regime
with bowing pressure is typical of musical strings, and is often
summarised in diagrams such as Shelleng’s [26]. It can be ob-
served how all the different solvers yield solutions of comparable
behaviour.

OS FB SOIT FOIT FONIT MOD

1
1 3.91 (3.00) 33.46 (3.00) 16.97 0.69
5 4.89 (3.61) 47.39 (3.83) 17.05 0.88
30 6.45 (4.58) 54.26 (4.28) 16.86 0.87

2
1 9.95 (3.00) 106.66 (3.00) 54.48 2.51
5 12.21 (3.48) 144.99 (3.72) 54.72 2.47
30 25.14 (6.34) 167.38 (4.15) 54.90 2.58

Table 1: Run-time/real-time ratio for the different schemes with
two sample rates, under different values of FB . OS indicates the
oversampling factor, so that fs = OS · 44100. The string’s pa-
rameters are the same as in Figure 3. The average number of iter-
ations per time-step requested by Newton-Raphson to converge is
reported in brackets for the iterative schemes.

Table 1 displays the run-time/real-time ratio for the various
solvers, and, for the iterative schemes, the average number of iter-
ations needed per time-step, with two sample rates, under differ-
ent values of FB . Run-times were measured with the Matlab tic
toc function. As expected, the number of iterations increases with
FB , as the system becomes “stiffer”. Run-time of the non-iterative
schemes is clearly unaffected by FB . It can be observed that the ef-
ficient modal algorithm is the fastest among all the solvers. On the
other hand, the two non-modal, first-order systems are the slowest
implementations. This is because both schemes require to explic-
itly invert a non-diagonal matrix (the Jacobian in the FOIT case,
and A in the FONIT case), which is twice the size of the Jacobian
of the SOIT scheme. Nevertheless, it has to be pointed out that no
further optimisation was considered for SOIT, FOIT and FONIT:
various speedups are available, but were not considered here for
lack of space. The results in Table 1 highlight the importance of
a sound implementation of linear system solvers, in particular in
the presence of structured matrices, since such structures are often
overlooked by compilers.

4. A MUSICAL EXAMPLE: THE DAMPED STIFF
STRING IN MODAL FORM

As a musical application, the case of a string with stiffness and
losses is now considered. The model reads

∂2
t u = c2∂2

xu− κ2∂4
xu− 2σ0∂tu− FBδ(x− xB)ϕ(η). (59)

Here, c =
√

T0/ρA, κ =
√

EI/ρA, where ρ is the string mate-
rial density, A is the cross-sectional area, T0 is the applied tension,
E is the Young’s modulus, I is the moment of inertia and σ0 is the
damping coefficient.

In (59), the 1-D wave equation is augmented by a stiffness
term, proportional to κ2, coming from the Euler-Bernoulli theory
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Figure 4: Vibration regimes of the stiff string under two values of
FB . Plots on the same row are snapshots of the same waveform,
taken in different time instants. String parameters were the ones of
a D3 cello string, taken from [13]. Bowing parameters, input and
output positions were as in Figure 3.

OS = 1 OS = 2 OS = 5
0.19 0.39 0.91

Table 2: Run-time/real-time ratio for the stiff string, run with dif-
ferent oversampling factors. As before: fs = OS · 44100

of vibrating beams. This theory is largely satisfactory for musical
purposes, see e.g. [27, 28]. Linear damping is here modelled by a
term dependent on the string velocity times σ0, the damping coef-
ficient. In this configuration, each partial decays at the same rate,
set by σ0, yielding a rather crude model for dissipation. There are
several ways to model frequency-dependent damping in the time
domain, typically employing mixed space-time derivatives [8].

As mentioned in Section 3.3, however, one of the advantages
of the modal projection is the possibility of setting a decay con-
stant for each one of the modes, without any additional computa-
tional effort. Implementation of refined physical loss profiles, such
as that described by Valette and Cuesta [29], is immediate in this
framework. After modal projection, (59) returns an augmented
form of (44a), that is

s̈ = −Ω2
ss−Cṡ− FBX(xB)ϕ(η), (60)

where here Ωs is a diagonal matrix containing the natural frequen-
cies of the stiff string, i.e. ωi =

√
(ciπ/L)2 + (

√
κ iπ/L)4, and

where C is a diagonal matrix containing the appropriate damp-
ing constants matching the frequency-dependent loss profile of the
Valette and Cuesta model. The resulting system can be simulated
with an algorithm analogous to the one employed for the ideal
string in Section 3.4.4. The only difference is that now the matrix
T is augmented by the matrix C. Since this matrix is diagonal,
the efficiency of the algorithm is unaffected. Figure 4 shows dif-
ferent vibration regimes of the stiff string, under two values of FB .
The plots on the same row are snapshots of the same waveform, at
different times: this allows to observe the string motion at the be-
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ginning of the excitation, and after it reaches steady state. When
FB = 5, the string displays a kind of multi-slip motion, while in
the case FB = 15 it reaches Helmholtz motion after few seconds.
Table 2 shows the run-time/real-time ratio for the stiff string: it is
possible to see that the algorithm runs in real-time at high sam-
ple rates even in Matlab. Note that, compared to the simple wave
equation, stiffness reduces the number of degrees of freedom, i.e.
the number of harmonics within the audible range, thus lowering
compute times. Sound samples for this model can be found at the
following Github link 1.

5. CONCLUSIONS

This work presented the application of non-iterative solvers in the
context of vibrating systems excited by the bow: the mass-spring,
the ideal string, and the lossy, stiff string. The non-iterative schemes
were developed in parallel to fully-implicit discretisations, obtained
using previously available discrete-gradient methods. In order to
implement the proposed method, the continuous equations were
first expressed as first-order system of ODEs, yielding a form typ-
ical of Port-Hamiltonian systems. It was seen that the proposed
schemes yield results comparable to the fully-implicit methods,
while avoiding entirely the need for iterative routines such as Newton-
Raphson. Yet, the proposed schemes are numerically robust, and
outperform classic explicit integrators such as Forward-Euler in
terms of stability. The string-bow was simulated using a number
of iterative and non-iterative discretisation. In particular, after the
string was semi-discretised using a modal approach, a fast algo-
rithm was given, exploiting the structure of the update matrix. This
yielded computations times below real-time, while allowing for an
accurate representation of losses with the addition of a finely-tuned
modal loss matrix. Fast implementations of the finite difference
schemes in the case of the string-bow are also possible, but left as
future work for lack of space. Future directions will also involve
the implementation of the non-iterative schemes in a faster lan-
guage, such as C++, and the development of software applications.
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