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Abstract Nonlinear vibrations of thin rectangular plates are considered, using the von Kármán equations in
order to take into account the effect of geometric nonlinearities. Solutions are derived through an expansion over
the linear eigenmodes of the system for both the transverse displacement and the Airy stress function, resulting
in a series of coupled oscillators with cubic nonlinearities, where the coupling coefficients are functions of the
linear eigenmodes. A general strategy for the calculation of these coefficients is outlined, and the particular
case of a simply supported plate with movable edges is thoroughly investigated. To this extent, a numerical
method based on a new series expansion is derived to compute the Airy stress function modes, for which an
analytical solution is not available. It is shown that this strategy allows the calculation of the nonlinear coupling
coefficients with arbitrary precision, and several numerical examples are provided. Symmetry properties are
derived to speed up the calculation process and to allow a substantial reduction in memory requirements.
Finally, analysis by continuation allows an investigation of the nonlinear dynamics of the first two modes
both in the free and forced regimes. Modal interactions through internal resonances are highlighted, and their
activation in the forced case is discussed, allowing to compare the nonlinear normal modes (NNMs) of the
undamped system with the observable periodic orbits of the forced and damped structure.

1 Introduction

Plates elements are commonly found in a variety of contexts in structural mechanics. An understanding
of their vibrational properties is crucial in many contexts, e.g. fluid-structure interaction problems, plate
and panel flutter in aeronautics [13], energy harvesting of fluttering flexible plates [18], piezoelectric and
laminated plates [15,21], as well as their coupling with electro-magnetic and thermal fields [22]. When the
plates are thin, vibration amplitudes can easily attain the same order of magnitude as the thickness. In this
case, the nonlinear geometric effects cannot be neglected, resulting in a rich variety of dynamics [2,38].
Examples can be given ranging from weakly to strongly nonlinear cases: nonlinear vibrations of plates with
moderate nonlinearity [2,45], fluid–structure interaction problems [25] and the transition from periodic to
chaotic vibrations [4,37,50]. Aside from typical engineering problems, the chaotic dynamics exhibited by thin
plates excited at large amplitudes finds application in the field of musical acoustics, as it accounts for the bright
and shimmering sound of gongs and cymbals [6,7,12,29]. It was pointed out recently, from the theoretical,
numerical and experimental viewpoints that the complex dynamics of thin plates vibrating at large amplitudes
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displays the characteristics of wave turbulence systems, and thus, it should be studied within this framework
[9,20,34,35,49].

A widely used model in nonlinear plate modelling is due to von Kármán [54]. This model takes into account
a quadratic correction to the longitudinal strain, as compared to the classical linear plate equation by Kirchhoff
[16,33,38,46]. The type of nonlinearity introduced is thus purely geometrical. The von Kármán equations are
particularly appealing because they describe a large range of phenomena while retaining a relatively compact
form, introducing a single bilinear operator in the classic linear equations by Kirchhoff.

Pioneering analytical work in the analysis of rectangular thin plate vibrations with geometrical nonlineari-
ties was carried out in the 1950s by Chu and Herrmann [17], demonstrating for the first time the hardening-type
nonlinearity that has been confirmed by numerous experiments; see, e.g. [1,28]. Restricting the attention to
the case of rectangular plates, the work by Yamaki [55] confirms analytically the hardening-type nonlinearity
for forced plates. The case of 1:1 internal resonance for rectangular plates (where two eigenmodes have nearly
equal eigenfrequencies) has been studied by Chang et al. [14] and by Anlas and Elbeyli [3]. Parametrically
excited nearly square plates, also displaying 1:1 internal resonance, have also been considered by Yang and
Sethna [56]. All these works focus on the moderately nonlinear dynamics of rectangular plates where only a
few modes (typically one or two) interact together. In these cases, the von Kármán plate equations are projected
onto the linear modes, and the coupling coefficients are computed with ad-hoc assumptions that appear difficult
to generalise. Finite element methods have also been employed—see, e.g. the work by Ribeiro et al. [42–44],
and Boumediene et al. [10] to investigate the nonlinear forced response in the vicinity of a eigenfrequency. Re-
cently, numerical simulations of more complex dynamical solutions, involving a very large number of modes in
the permanent regime, have been conducted, in order to simulate the wave turbulence regime and to reproduce
the typical sounds of cymbals and gongs. For that, Bilbao developed an energy-conserving scheme for finite
difference approximation of the von Kármán system [5], which allows the study of the transition to turbulence
[49] and the simulation of realistic sounds of percussive plates and shells [6,7]. Spectral methods with a very
large number of degrees of freedom have also been employed in [20] to compare theoretical and numerical
wave turbulence spectra.

This work aims at extending the possibilities of the modal approach to simulate numerically the non-
linear regime of rectangular plates. Instead of introducing ad-hoc assumptions, a general model is here
presented; this model retains a vast number of interacting modes, making possible the investigation of the
global dynamics of the plate while making it very precise. Within this framework, the advantages of the
modal approach are retained (accuracy of linear and nonlinear coefficients, flexibility in setting modal damp-
ing terms in order to calibrate simulation with experiment, . . .), and its limitations are overcome: there is
no restriction with respect to the amount of modes that one wants to keep. In this work, the possibility of
simulating dynamical solutions with a large number (say a few hundred) of modes is detailed. The case un-
der study is that of a simply supported plate with in-plane movable edges. For this particular choice, the
transverse modes are readily obtained from a double sine series [26]; the in-plane modes, however, are not
available in closed form. Interestingly, it was shown in [46] that the problem of finding the in-plane modes
for the chosen boundary conditions corresponds mathematically to the problem of finding the modes of a
fully clamped Kirchhoff plate. To this extent, a general strategy proposed in [31] is here adapted to find the
clamped plate modes. To validate the results, the resonant response of the plate in the vicinity of the first
two modes is numerically investigated, for vibration amplitudes up to three to four times the thickness. Sec-
ondly, a thorough comparison of the modal approach with the finite difference method developed in [5,6] is
also given. Calculation of the free response allows the study of the first two nonlinear normal modes of the
plate and to highlight the complicated dynamics displayed at large amplitudes. Modal couplings, resonant
and nonresonant, are investigated. Finally, the forced response is also computed, and the link between the
backbone curve and the forced response is investigated, showing the role of internal resonance and damp-
ing.

2 Model description

Plates whose flexural vibrations are comparable to the thickness are most efficiently described by the von
Kármán equations [17,33,39,46]. In the course of this paper, a rectangular plate of dimensions Lx , L y and
thickness h (with h � Lx , L y) is considered. The plate material is homogeneous, of volume density ρ,
Young’s modulus E and Poisson’s ratio ν. Its flexural rigidity is then defined as D = Eh3/12(1 − ν2). The
von Kármán system then reads
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DΔΔw + ρhẅ + cẇ = L(w, F) + δ(x − x0) f cos(Ωt), (1.1)

ΔΔF = − Eh

2
L(w, w), (1.2)

where Δ is the Laplacian operator, w = w(x, y, t) is the transverse displacement, and F = F(x, y, t) is
the Airy stress function. The equations present a viscous damping term cẇ and a sinusoidal forcing term
δ(x − x0) f cos(Ωt) applied at the point x0 on the plate. The damping will take the form of modal viscous
damping once the equations are discretised along the normal modes. The bilinear operator L(·, ·) is known as
von Kármán operator [46] and, in Cartesian coordinates, it has the form of

L(α, β) = α,xxβ,yy + α,yyβ,xx − 2α,xyβ,xy, (2)

where ,s denotes differentiation with respect to the variable s. This operator, although itself bilinear, is the
source of the nonlinear terms in the equations. All the quantities are taken in their natural units, so that Eq.
(1.1) and Eq. (1.2) have the dimensions, respectively, of kg m−1 s−2 and kg m−2 s−2. The term L(w, w) in Eq.
(1.2) is quadratic in w and its derivatives, so once the solution for F is injected into (1.1), a cubic nonlinearity
will appear, leading to a Duffing-type set of coupled ordinary differential equations (ODEs).

2.1 Linear modes

The strategy adopted here to solve the von Kármán system makes use of the linear modes for the displacement
w and Airy stress function F . This strategy is particularly useful for investigating the free and forced vibrations
of the system, in the sense that it allows for the reduction of the dynamics of the problem from an infinite
number of degrees of freedom to a finite one. The eigenmodes for the displacement w will be denoted by the
symbol Φk(x, y), and thus w(x, y, t) is written as

w(x, y, t) = Sw

Nw∑

k=1

Φk(x, y)

‖Φk‖ qk(t), (3.1)

where Φk is such that

ΔΔΦk(x, y) = ρh

D
ω2

kΦk(x, y). (3.2)

Note that the sum in Eq. (3.1) is terminated at Nw in practice. The linear modes can be defined up to a constant
of normalisation that can be chosen arbitrarily. For the sake of generality, Sw here denotes the constant of
normalisation of the function Φ̄ = Sw

Φk(x,y)
‖Φk‖ . The norm is obtained from a scalar product (α, β) between two

functions α(x, y) and β(x, y), defined as

< α, β >=
∫

S

α β d S −→ ‖Φk‖2 =< Φk, Φk >. (4)

Eq. (3.2) is the eigenvalue problem definition, and it is a Kirchhoff-like equation for linear plates.
The Airy stress function is expanded along an analogue series:

F(x, y, t) = SF

NF∑

k=1

Ψk(x, y)

‖Ψk‖ ηk(t), (5.1)

ΔΔΨk(x, y) = ζ 4
k Ψk(x, y). (5.2)

Boundary conditions for w and F will be specified in the next subsection. The linear modes so defined are
orthogonal with respect to the scalar product and are therefore a suitable function basis [26]. Orthogonality
between two functions Λm(x, y),Λn(x, y) is expressed as

< Λm, Λn >= δm,n‖Λm‖2, (6)

where δm,n is the Kronecker delta.
Once the linear modal shapes are known, system (1.1) may then be reduced to a set of ordinary differential

equations, each referring to the kth modal coordinate qk(t), k = 1, . . . , Nw. Nw represents the order of the
system of ODEs.
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2.2 Reduction to a set of ODEs

The introduction of the expansion series (3.1) and (5.1) allows for the decomposition of the original von
Kármán problem onto a set of coupled, nonlinear ordinary differential equations (ODEs). As a starting point,
Eq. (5.1) is substituted into Eq. (1.2) to obtain

ηk = − Eh

2ζ 4
k

S2
w

SF

∑

p,q

qpqq

∫
S Ψk L(Φp, Φq)dS

‖Ψk‖‖Φp‖‖Φq‖ . (7)

Integration is performed over the area of the plate, and the orthogonality relation is used. Injecting Eqs. (3)
and (7) into Eq. (1.1) gives

ρhSw

∑

k

ω2
kΦk

‖Φk‖ qk + ρhSw

∑

k

Φk

‖Φk‖ q̈k + cSw

∑

k

Φk

‖Φk‖ q̇k

= − EhS3
w

2

∑

n,p,q,r

1

ζ 4
n

L(Φp, Ψn)

‖Ψp‖‖Φn‖
∫

S Ψn L(Φq , Φr )dS

‖Φq‖‖Φr‖‖Ψn‖ qpqqqr + δ(x − x0) f cos(Ωt). (8)

Then, the equation is multiplied on both sides by Φs and integrated over the surface of the plate. The result is

q̈s + ω2
s qs + 2χsωs q̇s = − E S2

w

2ρ

n∑

p,q,r

Hn
q,r Es

p,n

ζ 4
n

qpqqqr + Φs(x0)

‖Φs‖ρhSw

f cos(Ωt), (9)

where a modal viscous damping is introduced in the equation, scaled by χs = c/(2ρhωs) (a dimensionless
parameter). A practical advantage of the modal description is that χs can be estimated experimentally for a
large number of modes [11], and so the modal approach allows the simulation of complex frequency dependent
damping mechanisms with practically no extra effort.

Two third order tensors, Hn
q,r and Es

p,n , appear in Eq. (9). These are defined as

Hn
p,q =

∫
S Ψn L(Φp, Φq)dS

‖Ψn‖‖Φp‖‖Φq‖ , Es
r,n =

∫
S Φs L(Φr , Ψn)dS

‖Φr‖‖Φs‖‖Ψn‖ . (10)

It is seen that the ODEs are cubic with respect to the variables qs , so a fourth-order tensor Γ can conveniently
be introduced in the equations, as

Γ s
p,q,r =

NF∑

n=1

Hn
p,q Es

r,n

2ζ 4
n

. (11)

Once the tensor Γ is known, one is left with a set of coupled ODEs that can be integrated in the time variable
using standard integration schemes. Alternatively, continuation methods can be employed to derive a complete
bifurcation analysis of the nonlinear dynamics.

2.3 Boundary conditions

To recover the von Kármán equations, one may define the potential and kinetic energies of a bent plate, in the
following way:

V =
3∑

i,k=1

h

2

∫

S

σikuikdS, (12.1)

T = ρh

2

∫

S

ẇ2dS, (12.2)

U =
2∑

i,k=1

h

2

∫

S

σ̃ik ũikdS (12.3)
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where V, T are the potential and kinetic energies for pure bending, and U is the potential energy for the
stretching in the in-plane direction. Note that two strain tensors (uik and ũik) and two stress tensors (σik and
σ̃ik) are introduced, in order to account for the pure bending and in-plane energies; note also that the indices of
the in-plane tensors can take only two values. Suppose that the displacement vector is u = (ux , uy, w) defined
in a Cartesian set of coordinates x = (x, y, z). The symmetric strain tensor uik is linear and can be given in
terms of the vertical displacement w as follows [23]:

uxx = −z∂2w/∂x2; uyy = −z∂2w/∂y2; uxy = −z∂2w/∂x∂y; uzz = ν

1 − ν
z(∂2w/∂x2 + ∂2w/∂y2),

(13)

and zero for all the other components. The stress–strain relationships are also linear, as the material is assumed
to be, and read

σik =
3∑

l=1

E

1 + ν

(
uik + ν

1 − 2ν
ull δik

)
. (14)

The symmetric, two-dimensional strain tensor ũik is nonlinear and given by

ũik =
[

1

2

(
∂ui

∂xk
+ ∂uk

∂xi

)
+ 1

2

∂w

∂xi

∂w

∂xk

]
, (15)

and the stress–strain relationships for the in-plane stretching are given as

σ̃xx = E

1 − ν2 (ũxx + νũ yy); σ̃yy = E

1 − ν2 (ũ yy + νũxx ); σ̃xy = E

1 + ν
ũxy (16)

and zero for all the other components. The Airy stress function F is introduced as

σ̃xx = ∂2 F/∂y2; σ̃yy = ∂2 F/∂x2; σ̃xy = −∂2 F/∂x∂y. (17)

Note that the only nonlinear term that appears in the definitions of the energies is the quadratic factor in ũik .
It is possible to make use of Hamilton’s principle, stated in the form

t1∫

t0

δ(T − V − U ) dt = 0, (18)

to recover the equations of motion (1.1) plus the boundary conditions. These can be categorised as follows
[46] (here ,n, ,t denote differentiation along the normal and tangent directions, respectively):

– In-plane direction
– free edge: F,nt = F,t t = 0
– immovable edge (w = 0 along the boundary): F,nn − νF,t t = F,nnn + (2 + ν)F,nnt = 0

– Edge rotation
– rotationally free: w,nn + νw,t t = 0
– rotationally immovable w,n = 0

– Edge vertical translation
– free: w,nnn +(2 − ν)w,ntt − 1

D (F,t tw,n − F,ntwt ) = 0
– immovable w = 0.

A corner condition arises as well, and it is

w,xy = 0 at corners. (19)

This constraint has to be imposed as an extra condition only when the edge is transversely free. It is evident that
the boundary conditions must be fulfilled by all the linear modes Φk, Ψk that appear in the expansions (2.1),
(5.1). For the transverse function, simply supported boundary conditions are considered for the remainder of
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the paper. These describe a fixed, rotationally free edge and permit a simplified analysis because a solution is
readily available:

Φk = sin

(
k1πx

Lx

)
sin

(
k2πy

L y

)
; ω2

k = D

ρh

[(
k1π

Lx

)2

+
(

k2π

L y

)2
]2

. (20)

For the in-plane direction, a free edge is considered. However, a different form of the boundary conditions
will be used, i.e. F = F,n = 0. It is evident that the assumed conditions are sufficient to satisfy the proper
conditions F,nt = F,t t = 0. Note that, mathematically speaking, the assumed conditions on F turn the stress
function problem into a transversely clamped plate problem.

The selected boundary conditions are also known as simply supported with movable edges [1].

3 A solution for the clamped plate

As shown in the previous section, the eigenvalue problem for F with the chosen boundary conditions is
equivalent to that of a clamped Kirchhoff plate. To this extent, the Galerkin method is employed, as an
analytical solution for the problem is not available.

The starting point of the Galerkin method is to express the eigenfunction Ψk of Eqs. (5) as a series of this
form:

Ψk(x, y) =
Nc∑

n=0

ak
nΛn(x, y) (21)

where Λn(x, y) are the expansion functions depending on some index n, and ak
n are the expansion coefficients:

these depend on the index n and of course on the index k. The total number of expansion functions is Nc,
and obviously, the accuracy of the solution improves as this parameter is increased. The Λ’s must be carefully
selected from the set of all comparison functions [48]; this is to say that they need to satisfy the boundary
conditions associated with the problem that they are at least p times differentiable (where p is the order of the
PDE), and they form a complete set over the domain of the problem. Completeness is quite a rather involved
property to prove; however, one generally resorts to variations of sine or cosine Fourier series, for which
completeness follows directly from the Fourier theorem.

For this work, the expansion functions were selected according to a general method proposed in [31], where
it is shown how a Kirchhoff plate problem can be solved by means of a double modified Fourier cosine series,
i.e.

Λn(x, y) = Xn1(x)Yn2(y) =
(

cos

(
n1πx

Lx

)
+ pn1(x)

)(
cos

(
n2πy

L y

)
+ pn2(y)

)
, (22)

where pn1(x), pn2(y) are fourth-order polynomials in the variables x and y, and depending as well on the
integers n1, n2. Note that the order of the polynomials corresponds to the order of the PDE. The role of the
polynomial is to account for possible discontinuities at the edges due to the boundary conditions. Li [31]
is mainly concerned with a general solution strategy, where the plate is equipped with linear and rotational
springs at the edges to simulate the effect of different boundary conditions. In [31], the polynomials of Eq.
(22) do not appear explicitly, as they are obtained through matrix inversion in order to comply with the general
form of the boundary conditions. In turn, these matrices present the values of all the springs, and the general
expression of the Λ’s is rather involved. However, given that the focus here is on the clamped plate only, the
analytical limit of all the springs having infinite stiffness is taken, so that an explicit form for (22) can indeed
be recovered, and this is:

Xn1(x) = cos

(
n1πx

Lx

)
+ 15(1 + (−1)n1)

L4
x

x4 − 4(8 + 7(−1)n1)

L3
x

x3 + 6(3 + 2(−1)n1)

L2
x

x2 − 1, (23)

and similarly for Yn2(y). Note that for the clamped plate satisfaction of the boundary conditions is essential for
a fast converging solution. This is because the conditions at the edges for the clamped plate are geometrical,
as they prescribe the vanishing of the displacement and of the slope. Thus, an expansion function that does not
satisfy these conditions could lead to slow converging solutions, if not to wrong results.
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Table 1 Convergence of clamped plate frequencies, ζ 2
k Lx L y, ξ = 2/3

k Nc

25 100 144 255 400 484
1 40.509 40.508 40.508 40.508 40.508 40.508
2 62.563 62.556 62.556 62.556 62.556 62.556
3 99.193 99.187 99.187 99.186 99.186 99.186
4 99.790 99.787 99.783 99.783 99.783 99.783
5 119.75 119.71 119.71 119.71 119.71 119.71
20 476.05 359.60 359.58 359.57 359.57 359.57
50 – 859.52 839.38 839.31 839.31 839.31
100 – 2,439.9 1,669.7 1,574.3 1,500.3 1,500.3

Table 2 Comparison of clamped plate frequencies, ζ 2
k Lx L y, ξ = 2/3

k Source

Galerkin (Nc = 400) Leissa FD (241 × 161)
1 40.51 40.51 40.05
2 62.56 62.58 61.93
3 99.19 98.25 98.00
10 208.0 207.9 205.5
20 359.6 – 355.32

It is seen that this expansion satisfies the clamped plate conditions, but not the differential equation. It is
possible to show however that one particular choice for the expansion coefficients ak

n will render the function Ψk
an eigenfunction for the problem. The Galerkin method describes how to build up stiffness and mass matrices
in order to calculate the coefficient vector ak

n and the corresponding eigenfrequency ζ 4
k . For the problem (5.2),

these matrices are

Ki j =
∫

S

[Δ Λi Δ Λ j − L(Λi , Λ j )]dS, Stiffness Matrix (24.1)

Mi j =
∫

S

Λi Λ j dS, Mass Matrix (24.2)

where L(·, ·) is the von Kármán operator. Note that the integrals can be calculated analytically, because of the
simple form of the expansion function. Explicit forms of the integrals are presented in “Appendix A”. Then,

K a = ζ 4 Ma, (25)

which is the required eigenvalue problem that leads to the expansion coefficients and the eigenvalues.

3.1 Numerical results for the clamped plate

In this section, the results obtained by Galerkin’s method are compared to the classical results found in Leissa’s
tables [30]. A finite difference scheme (FD) developed by Bilbao [5] is as well used as a benchmark. A useful
parameter in plate problems is the aspect ratio, here defined as Lx/Ly and denoted by the symbol ξ . Assume
that two plates present the same aspect ratio: then, it is straightforward to show that the quantity ζ 2Lx L y is
constant for the two plates, where ζ is defined in Eq. (5.2) (thus making ζ 2Lx L y a nondimensional parameter).
As a first step, the rate of convergence of the eigenfrequencies is proposed in Table 1. The plate has an aspect
ratio of 2/3. Nc denotes the number of modes kept in the expansion (21). Note that convergence for the
first 100 eigenfrequencies is obtained up to the fifth significant digit when Nc = 400. This corresponds to a
calculation time of less than 10 s in MATLAB on a standard machine equipped with an Intel Core i5 CPU 650
@ 3.20 GHz, and a memory of 4 GB. In Table 2, the results obtained by Galerkin’s method are compared to
those found in Leissa as well as to the outcome of the FD scheme. For this, the plate parameters have been set
as: Lx = 0.4 m, L y = 0.6 m, ρ = 7, 860 kg/m3, ν = 0.3, h = 0.001 m, E = 2 × 1011 Pa. The FD scheme
employs 241 × 161 discretisation points, so that ΔxΔy

S = 2.6 × 10−5. Even though Leissa’s book represents
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Table 3 Convergence of clamped plate frequencies, FD scheme, ζ 2
k Lx L y, ξ = 2/3

k Grid points

36 × 54 51 × 76 114 × 171 161 × 241 228 × 342 280 × 419
1 38.539 39.094 39.862 40.048 40.182 40.242
2 59.889 60.638 61.682 61.934 62.115 62.196
3 93.993 95.484 97.509 97.995 98.343 98.499
4 95.768 96.914 98.491 98.865 99.134 99.253
10 197.00 200.20 204.48 205.49 206.22 206.54

Table 4 Convergence of clamped plate frequencies, ζ 2
k Lx L y, ξ = 1 (square plate)

k Nc

25 100 144 255 400 484
1 35.986 35.985 35.985 35.985 35.985 35.985
2 73.398 73.394 73.394 73.394 73.394 73.394
3 73.398 73.394 73.394 73.394 73.394 73.394
4 108.24 108.22 108.22 108.22 108.22 108.22
5 131.60 131.58 131.58 131.58 131.58 131.58
20 376.42 371.37 371.35 371.35 371.34 371.34
50 – 805.89 805.42 805.35 805.34 805.34
100 – 2,217.0 1,588.7 1,546.2 1,546.1 1,546.1

Table 5 Comparison of clamped plate frequencies, ζ 2
k Lx L y, ξ = 1 (square plate)

k Source

Galerkin (Nc = 400) Leissa FD (161 × 161)
1 35.98 35.99 35.54
2 73.39 73.41 72.49
3 73.39 73.41 72.49
4 108.2 108.3 106.9
20 371.3 – 366.7

Fig. 1 First four modes for the clamped plate, ξ = 2/3

one of the main references in the area of plate eigenmodes and frequencies, its results are somehow outdated,
being about 40 years old. Thus, discrepancies between the presented Galerkin’s method and the numbers from
Leissa’s book are not at all concerning. On the other hand, it is known that FD schemes converge at a slower
rate than a pure modal approach. This is a consequence of the fact that FD schemes rely on discrete grid
meshes. Convergence for the first eigenfrequencies for the plate using the FD scheme is presented in Table
3. Note that the eigenfrequencies tend to converge to the same values as Galerkin’s method. However, the
calculation time in MATLAB for a mesh grid of 280 × 419 points is much slower (about 20 min). Table 4
presents the eigenfrequencies for the square plate, using Galerkin’s method. It is possible to appreciate the
same rate of convergence as for the previous case. Again, the results are compared with Leissa and to the FD
scheme outcome (161 × 161 grid points) in Table 5. Plots of some clamped plate eigenmodes are presented in
Fig. 1. These results show that the Galerkin method, with the carefully chosen expansion (23), is indeed a fast
converging strategy for the calculation of the eigenfrequencies, as it allows for precisely computing hundreds
of modes within seconds.
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4 The nonlinear coupling coefficients

4.1 Symmetry properties

In this section, symmetry properties for the coupling coefficients Γ that appear in Eq. (11) are presented. First,
it is obvious that

Hi
p,q = Hi

q,p, (26)

because of the symmetry of the operator L(·, ·). Secondly, integrating by parts, the integral in the definition of
E in Eq. (10) gives

‖Ψq‖‖Φn‖‖Φp‖En
p,q =

∮ [
ΦnΨq,yΦp,xx − 2ΦnΨq,xΦp,xy − Ψq

∂

∂y

(
ΦnΦp,xx

)]
y · n dΩ +

+
∮ [

ΦnΨq,xΦp,yy + 2Ψq
∂

∂y

(
ΦnΦp,xy

) − Ψq
∂

∂x

(
ΦnΦp,yy

)]
x · n dΩ

+
∫

Ψq L(Φp, Φn)dS. (27)

It is easy to see that the selected boundary conditions make the surface integrals vanish, so that the following
property holds:

En
p,q = Hq

p,n . (28)

In this way, the tensor Γ may then be conveniently written as

Γ s
p,q,r =

NF∑

n=1

Hn
p,q Hn

r,s

2ζ 4
n

. (29)

Note that the tensor H as defined in Eq. (10) is divided by the norms of the modes, so the value of Γ is
independent of the particular choice for the constants Sw, SF in Eqs. (3.2), (5.2). Basically, the symmetry
properties for Γ mean the following sets of indices will produce the same numerical value:

(s, p, q, r), (r, p, q, s), (s, q, p, r), (r, q, p, s), (q, r, s, p), (p, r, s, q), (q, s, r, p), (p, s, r, q). (30)

These symmetry properties can lead to large memory savings when the number of transverse and in-plane
modes is a few hundred.

4.2 Null coupling coefficients

For the sake of numerical computation, it would be interesting to know a priori which coupling coefficients are
null. In actual fact, empirical observations of the Γ tensor suggest that only a smaller fraction of coefficients
is not zero. As an example, consider Table 6 where the nonzero values for the coefficients Γ 1

5,q,r for a plate
with ξ = 2/3 were collected (with p, q = 1 . . . 10): the table presents only 24 nonzero coefficients out of
a total of 100. These coefficients measure the amount of interaction between the different transverse modes.
As a matter of fact, the modes can be classified according to the symmetry with respect to the x and y axis
where the origin is placed at the centre of the plate. Four families exist, and they are: doubly symmetric
(SS), antisymmetric-symmetric (AS and SA) and doubly antisymmetric (AA). For instance, the first mode is
a doubly symmetric mode because it presents one maximum at the centre of the plate, and is thus symmetric
with respect to the two orthogonal directions departing from the centre of the plate in the x and y directions,
whereas mode 5 is AA. The first sixteen modes for the case under study may be classified in the following
groups:

◦ SS: 1, 4, 8, 11, 12
◦ SA: 2, 7, 9, 14, 16
◦ AS: 3, 6, 13, 15
◦ AA: 5, 10
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Table 6 Nonzero Γ 1
5,q,r (Lx L y)

3, ξ = 2/3, for q = 1 : 10, r = 1 : 10

Value q r Modal shape groups Value q r Modal shape groups
21.36 1 5 SS AA SS AA 27.55 6 2 SS AA AS SA
−21.75 1 10 SS AA SS AA 150.98 6 7 SS AA AS SA
48.46 2 3 SS AA SA AS 36.52 6 9 SS AA AS SA
7.55 2 6 SS AA SA AS −72.47 7 3 SS AA SA AS
122.11 3 2 SS AA AS SA 119.51 7 6 SS AA SA AS
−169.47 3 7 SS AA AS SA 56.36 8 5 SS AA SS AA
−69.44 3 9 SS AA AS SA −64.89 8 10 SS AA SS AA
56.71 4 5 SS AA SS AA 10.19 9 3 SS AA SA AS
9.8 4 10 SS AA SS AA 65.63 9 6 SS AA SA AS
3.1 5 1 SS AA AA SS −51.96 10 1 SS AA AA SS
144.68 5 4 SS AA AA SS 97.76 10 4 SS AA AA SS
46.47 5 8 SS AA AA SS 30.75 10 8 SS AA AA SS

This list will become useful when interpreting the free vibration diagrams of the next section. Remarkably, the
number of indices of the Γ coefficients (four) matches the number of modal shape sets. Table 6 presents the
modal families to which the interacting modes belong; observation of alike tables permits to state the following
heuristic rule:

the indices (s, p, q, r) will give a nonzero value for Γ s
p,q,r if and only if modes s,p,q,r come all from

distinct modal shape groups or if they come from the same group two by two.

For example, the combinations (SS, SS, AS, SA) and (SS, SS, SS, AS) will definitely give a zero value; on the
other hand, the combinations (SS, SS, SS, SS), (SS, AA, SS, AA) and (SS, AS, SA, AA) will give a nonzero
value. A rigorous mathematical proof is not carried out as it involves a rather lengthy development which is
beyond the scope of the present work. However, it has been numerically checked for a large number of Γ ’s
involving a few hundred modes, providing an exhaustive verification of this rule.

This rule, in combination with the previous remarks on symmetry, can be used to speed up the calculation
of the Γ tensor (for example by pre-allocating the zero entries when using a sparse matrix description). In
some way, this observation relates to the already noted property of von Kármán shells [47]. There, the coupling
rules are actually more involved, but they can be somehow more directly proved mathematically.

4.3 A few words on the FD scheme

To validate the computational results for the Γ tensor, an FD scheme developed in [5] has been extensively
used. In this sense, the role of the discretised L operator in Eq. (11) is central. For two discrete functions α, β
defined over the plate grid, the form for the discrete counterpart l(α, β) has been selected as

l(α, β) = δxxαδyyβ + δyyαδxxβ − 2μx−μy−(δx+y+αδx+y+β). (31)

The δ’s are discrete derivative operators, and the μ’s are averaging operators, as follows from

δxx = 1

h2
x
(ex+ − 2 + ex−); δx+ = 1

hx
(ex+ − 1); μx− = 1

2
(ex− + 1), (32)

where ex+ (ex−) is the positive (negative) shifting operator, and hx is the step size along the x direction. Note
that this particular choice for the l operator is due to the fact that it produces an energy-conserving scheme, as
explained exhaustively in [5]. The eigenmodes are obtained by solving discrete counterparts of Eqs. (3.2) and
(5.2), and thus, a discrete double Laplacian is needed. At interior points, it can be approximated by

δΔ�δΔ� = (δxx + δyy)(δxx + δyy) = ΔΔ + O(hx hy). (33)

Enforcing of boundary conditions (simply supported and clamped) is described in [6]. Once the modes are
known, one makes use of (31) to get the values of the coupling coefficients in Eq. (11).
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Table 7 Convergence of coupling coefficients, Γ k
k,k,k(Lx L y)

3, ξ = 2/3

k NF

100 144 225 400 484 625
1 20.033 20.034 20.034 20.034 20.034 20.034
20 7.5605 × 103 9.4893 × 103 9.4960 × 103 9.4970 × 103 9.4975 × 103 9.4977 × 103

50 1.3928 × 104 1.3929 × 104 1.3937 × 104 1.3937 × 104 1.3937 × 104 1.3937 × 104

100 1.4847 × 104 2.7360 × 104 1.2413 × 105 1.3334 × 105 2.2100 × 105 2.2108 × 105

Table 8 Convergence of coupling coefficients, FD scheme, Γ k
k,k,k(Lx L y)

3, ξ = 2/3, NF = 100

k Grid points

36 × 54 51 × 76 114 × 171 161 × 241 228 × 342 280 × 419
1 21.113 20.523 20.523 20.380 20.252 20.188
20 9.8904 × 103 9.7238 × 103 9.6364 × 103 9.5761 × 103 9.5218 × 103 9.4944 × 103

50 1.4542 × 104 1.4430 × 104 1.4319 × 104 1.4224 × 104 1.4124 × 104 1.4070 × 104

100 1.0864 × 104 8.2016 × 103 6.8281 × 103 5.9133 × 103 5.1224 × 103 4.7387 × 103

Table 9 Convergence of coupling coefficients, FD scheme, Γ k
k,k,k(Lx L y)

3, ξ = 2/3NF = 225

k Grid points

36 × 54 51 × 76 114 × 171 161 × 241 228 × 342 280 × 419
1 21.114 20.728 20.523 20.381 20.253 20.189
20 9.9634 × 103 9.7935 × 103 9.7035 × 103 9.6413 × 103 9.5851 × 103 9.5567 ×103

50 1.4552 × 104 1.4440 × 104 1.4329 × 104 1.4234 × 104 1.4134 × 104 1.4080 × 104

100 2.0268 × 105 2.0223 × 105 2.0227 × 105 2.0246 × 105 2.0271 × 105 2.0286 × 105

4.4 Numerical results

In this subsection, some numerical results are presented. It is somehow useful to note that the Γ ’s depend only
on the aspect ratio. In other words, the quantity

Γ s
p,q,r (Lx L y)

3 (34)

is constant for all the plates sharing the same aspect ratio. Table 7 presents a convergence test for a plate of
aspect ratio ξ = 2/3. The convergence in this case depends on two factors: the first is the amount of stress
function modes retained in the definition of Γ [NF in Eq. (11)]; the second is the accuracy on the Airy stress
function modes and frequencies [quantified by the number Nc in Eq. (21)]. For clarity, in the following Tables,
NF is always the same as Nc. It is seen that a four-digit convergence up to the Γ 100

100,100,100 coefficient is
obtained when NF = 484, and thus, the convergence rate for these coefficients is slower than that of the stress
functions eigenfrequencies alone. For the FD scheme, convergence depends on the number of modes retained
and also on the grid size. Thus, Tables 8 and 9 present some values for NF = 100 and NF = 200, respectively.
Note that, contrary to what happens for the eigenfrequencies, convergence for the coupling coefficients is from
above for FD and from below for the modal approach. It is also evident that a sufficiently large number of
stress modes has to be retained to calculate reasonable approximate values for the Γ ’s: failing to do so may
result in completely erroneous estimates (see for instance the last row of Table 8 compared to the last row of
Table 9).

5 Analysis of the periodic solutions

The nonlinear dynamics of the plate is now analysed in terms of periodic solutions. The periodic orbits of
the conservative system, also called the nonlinear normal modes (NNMs) [53], are first computed thanks to a
pseudo arc-length numerical continuation method implemented in the software AUTO [19]. The amplitude–
frequency relationships (i.e. the backbone curves) are exhibited for the first two modes up to 3–4 times the
thickness, displaying a complicated network of bifurcation branches generated by internal resonances and
modal couplings. Secondly, the forced responses of the damped plate are computed and their relationship with
the backbone curve illustrated.
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Fig. 2 Backbone curve (principal branch) convergence for mode 1: Nw = 6 (black), Nw = 8 (red), Nw = 10 (grey), Nw = 14
(green), Nw = 16 (blue), Nw = 18 (purple) (colour figure online)

5.1 Mode 1

5.1.1 Free vibrations

Figure 2 is an illustration of the backbone convergence, for mode 1. The backbone is the curve obtained by
plotting the maxima of the periodic solutions, in the case of undamped, unforced vibrations, which can be
stable (continuous lines) or unstable (dashed lines). Note that only the principal branch is represented, and
thus, the figure does not take into account the secondary branches departing from the bifurcation points. The
figure presents the six backbones obtained when Nw = 6, 8, 10, 14, 16, 18. It is evident that the period of
the vibration decreases as the amplitude increases, and thus, the curves bend to the right in the diagram;
this behaviour is known in the literature as hardening-type nonlinearity. The backbone curves obtained for
Nw = 14, 16, 18 are almost exactly superimposed showing the convergence of the main solution branch for
vibration amplitudes up to 4h. Note also that the cases Nw = 8, 10 are exactly superimposed because modes 9
and 10 do not belong to SS (the family of mode 1); hence, the shape of the backbone does not change, although
the stability intervals do not coincide. No stable solutions are detected by AUTO for vibrations larger than 4h:
this result is consistent with numerous experimental and numerical simulations of large amplitude vibrations
of plates; higher vibration amplitudes give way to unstable solutions, in quasiperiodic or turbulent regimes
[49,50]. The range of convergence of the backbone decreases when less modes Nw are considered; particularly
for the case of Nw = 6, the backbone displays significant differences from the converged solution. In addition,
unstable solutions in this case set in much earlier, leading to the conclusion that when Nw = 6 the backbone
curve depicts an unrealistic scenario for amplitudes larger than 1.8h. The principal branch for the cases
Nw = 14, Nw = 16, Nw = 18 undergoes an internal resonance around ω/ω1 ≈ 1.27. This is a resonance
between mode 1 and mode 11, and will be commented later. It is seen that the cases Nw = 16, Nw = 18 are
perfectly superimposed, and thus, a total number of Nw = 16 modes is sufficient for full convergence; hence,
this is the number of modes that will be considered in the remainder of the paper. Figure 3 shows the complete
resonance scenario for mode 1, and in other words, it presents the backbone and the bifurcated branches.
Figure 3 is basically a representation of the first NNM as a function of the frequency of vibration for the first
mode. For clarity, only the most significant modal coordinates are represented. Branches are denoted by the
symbol Bi

k where the index i refers to the branch number and k is the coordinate involved. Thus, B1 is the main
(backbone) branch, and B2, B3, . . . are secondary branches featuring a sudden loss of energy of q1 in favour of
other nonlinearly resonant modes. The appearance of internal resonance tongues due to the exchange of energy
between modes at nonlinear frequencies of vibration has been previously observed for systems involving a
few degrees of freedom, or for continuous systems with local nonlinearities [8,24,27,41]; in turn, these works
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(a)
(b)

(c)

(d)

Fig. 3 a Free vibration diagram for mode 1, Nw = 16. b– d Bifurcated branches and internal resonances (colour figure online)

show that NNM branches may fold in the presence of internal resonances. In this paper, internal resonance
foldings in the NNM branches are reported for a continuous structure with distributed geometric nonlinearity.
The bifurcated branches are composed mainly by unstable states along intricate paths and are difficult to
compute numerically when using continuation. Note, however, that the free NNM is a physical abstraction:
when damping and forcing are introduced in the system, most of the complicated details disappear, as it will
be shown in the next subsection.

Observing B1 before the first bifurcation point, it is easily seen that modes 4 (B1
4, green), 8 (B1

8, light green),
11 (B1

11, magenta) and 12 (not shown) bear a relatively important contribution. Here, a typical nonresonant
coupling is at hand. As it can be deduced from Sect. 4.2, the only nonvanishing coefficients Γ

p
1,1,1 with

p = 1, . . . , 16 are obtained for p = 1, 4, 8, 11, 12. These coefficients are of prime importance as they give
rise to a term of the form Γ

p
1,1,1q3

1 in the equation for qp. Thus, when q1 is large, modes 4,8,11 and 12 acquire
nonnegligible energy through the nonresonant coupling terms Γ

p
1,1,1, which act on the modal equations as

forcing terms. These coefficients have been referred to as invariant-breaking terms because they have the
property of breaking the invariance of the linear normal modes through modal coupling [51,52]. The coupling
in these cases is nonresonant because no commensurability relationship exists between the frequencies of
vibration.

The first bifurcated branch is B2 and develops along a very narrow frequency interval between 1.2435 <
ω/ω1 < 1.248. It is a very small branch, and it is visible in Fig.3b (B2

1) and Fig.3d (B2
2). The modes involved

in this bifurcation are 1 and 2. It is evident that mode 2, so far quiescent, is activated by an internal resonance
with mode 1. The order of the internal resonance can be obtained from a temporal simulation of the system
comprising Nw = 16 modes, fed at the input by the maximum displacements and velocities for all the modal
coordinates along B2. In this work, a fourth-order Runge–Kutta scheme is used for the time integration, giving
at the output the oscillation in time for all the modes in the periodic regime. Figure 4a represents modes 1 and
2 in the time domain on the point at ω/ω1 = 1.246 along the branch B2. The figure shows that the period
of vibration for mode 2 is exactly half the period of mode 1, resulting in a 1:2 internal resonance. Note that
starting the simulation on any other point of the same branch will lead to the same resonance ratio.

In the next section, it will be seen that the bifurcation giving rise to B2 is key to the dynamics of the driven
damped oscillations: this branch tends to occupy larger portions of the phase space as the forcing and damping
terms increase, modifying the local structure of the invariant NNM manifold.

Following the principal branch in Fig. 3b, one encounters a second bifurcation giving rise to B3. This is
an interesting branch where again quiescent modes are activated by internal resonances. Figure 3d reveals
that these are modes 2 (B3

2, red), 14 (B3
14, grey) and 16 (B3

16, black). Note that the branch B3 emerges at
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(b) (c)(a)

Fig. 4 a Modes 1 (blue) and 2 (red) along B2 displaying 1:2 internal resonance. b Modes 1 (blue) and 2 (red) along B3 displaying
1:2 internal resonance. c Modes 1 (blue), 14 (grey) and 16 (black) along B3 displaying 1:10 internal resonance (colour figure
online)

ω/ω1 = 1.285 and first develops to the left towards decreasing frequencies. The branch is characterised at
first by a strong coupling between modes 1 and 2 (visible in Fig. 3d) and then by a coupling amongst modes
1,14 and 16. The order of the resonance can again be extrapolated from a Runge–Kutta time-domain scheme
fed with the AUTO output. This gives Fig. 4b, c where it is seen that modes 1 and 2 undergo a second 1:2
internal resonance, whereas modes 1–14 and 1–16 display a 1:10 internal resonance. Thus, the dynamics of
this branch is again dominated by even-order internal resonances. The last branch is B4. This is an improper
labelling because this branch is actually the principal branch undergoing an internal resonance with mode 11
(B4

11, magenta). This branch is almost entirely unstable, and the Runge–Kutta time-domain simulation does not
return stable periodic solutions. There is no doubt, however, that the branch is activated by internal resonance
between modes 1 and 11, given the rapid growth of the latter in the bifurcation diagram at the expense of mode
1.

The analysis of the first NNM revealed some important aspects of the nonlinear system: in particular, it was
shown that the bifurcated branches are generated by even-order internal resonances which, in turn, break the
symmetry of the cubic nonlinearity possessed by the system. This symmetry-breaking bifurcation has already
been observed for the simple Duffing equation [32,40], as well as in systems with material nonlinearity [36].
Physically speaking, the most important properties returned by the analysis of the free NNM are as follows:
(i) the loss of stability of the periodic solutions for amplitudes above 3h; (ii) the pitchfork bifurcation giving
rise to B2 presenting a strong coupling between modes 1 and 2. The next subsection will treat in some detail
a few examples of forced-damped vibrations, and it will be seen how the shape of the NNM gets modified by
the damping and forcing terms.

5.1.2 Forced-damped vibrations

In this section, forced-damped vibrations are considered. The plate is forced with a sinusoid of maximum
amplitude f and frequency Ω [see Eq. (9)] varied around the eigenfrequency of the first mode, ω1. In turn,
damping and forcing terms modify the shape of the invariant manifold corresponding to the NNM of the
previous section. Internal resonances change too: some are basically unseen by the modified NNM, whereas
others play a major role.

The first case under study presents a forcing amplitude of f = 0.17 N, and a damping coefficient χi = 0.001
(same for all modes). The result is pictured in Fig. 5. In the figure, the forced branches are represented with
the usual colouring scheme (blue for mode 1 and red for mode 2), whereas the black lines are the branches
from the Hamiltonian dynamics. The point labelled G in Fig. 5 corresponds to a pitchfork symmetry-breaking
bifurcation, driven by the underlying Hamiltonian dynamics and by the existence of the 1:2 internal resonance.
The main branch becomes unstable in favour of stable periodic orbits where both modes 1 and 2 are activated in
a 1:2 internal resonance. Hence, branch B2 reveals its importance as it has a major effect in the damped-driven
case. One can also notice that, for this small amount of damping, the turning point J is located just before the
resonant tongue along the original backbone curve.

In order to understand more deeply the role of the branch B2, two more cases of interest are portrayed
in Figs. 6 and 7. Here, f = 1.36 N for both cases, and χi = 0.005 for Fig. 6 and 0.001 for Fig. 7. The first
important remark is the location of the pitchfork bifurcation along the main branch: q1/h = 1.899 for Fig. 6 and
q1/h = 1.824 for Fig. 7. It is seen that the invariant manifold of the Hamiltonian dynamics is largely affected
by the damping and forcing terms: the bifurcation G is located at very different points in the phase space
when comparing free and forced-damped vibrations. The 1:2 internal resonance giving rise to B2 becomes
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Fig. 5 Forced response for mode 1 with f = 0.17 N, χ = 0.001. G: pitchfork bifurcation point leading to the coupled solution;
J turning point. Mode 1: blue, mode 2: red (colour figure online)

Fig. 6 Forced response for mode 1 with f = 1.36 N, χ = 0.005. G: pitchfork bifurcation point leading to the coupled solution;
J turning point. Mode 1: blue, mode 2: red (colour figure online)

in the latter case a dominant part of the dynamics, taking up a large portion of the phase space composed
mainly of stable solutions. As a consequence, stable solutions are found on B2 at amplitudes larger then 3h.
In addition, there is no trace of the other bifurcations giving rise to B3, B4 in the Hamiltonian dynamics.
This observation leads to the conclusion that the free and forced-damped analyses are complementary: on
one hand, it is not straightforward to understand which bifurcations are key to the forced-damped vibrations
when looking solely at the Hamiltonian dynamics; on the other hand, the forced-damped system is more easily
interpreted by making use of the free vibrations diagrams. Hence, a complete scenario for the forced-damped
vibrations cannot be obtained if a preliminary analysis of free vibrations is disregarded.
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Fig. 7 Forced response for mode 1 with f = 1.36 N, χ = 0.001. G: pitchfork bifurcation point leading to the coupled solution;
J turning point. Mode 1: blue, mode 2: red (colour figure online)

Fig. 8 Backbone for mode 2 obtained when Nw = 16. Modes 7 (pink) and 9 (dark blue) are activated by the nonresonant coupling
within the SA family; mode 5 (brown) from the AA family is activated by 1:2 internal resonance (see inset) (colour figure online)

5.2 Mode 2

5.2.1 Free vibrations

Figure 8 shows the second NNM for Nw = 16. Convergence in this case is not shown for the sake of brevity;
note, however, that the convergence study gave results comparable to those of mode 1. Thus, the same model
including Nw=16 modes is kept for the remainder of the study. Once again, one can notice that no stable
solutions are found beyond a certain amplitude limit, which is numerically found at 1.5h for mode 2. Actually,
the principal branch loses its stability at the appearance of the coupled branch. As for mode 1, some modes are
activated by nonresonant coupling, and these are the modes belonging to the same family as mode 2 (SA): the
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(a) (b) (c)

Fig. 9 Examples of forced-damped vibrations around the NNM for mode 2. a f = 1.2 N, χ = 0.001; b f = 2.0 N, χ = 0.001;
c f = 3.2 N, χ = 0.01. Mode 2: red, mode 5: brown (colour figure online)

Figure shows for clarity only modes 7 (B1
7, pink) and 9 (B1

9, dark blue). The most salient feature of the dynamics
is the internal resonance between modes 2 and 5: a time integration was performed on B2 at ω/ω1 = 2.0515,
leading to the solution visible in the inset of Fig. 8 showing a 1:2 internal resonance. Interestingly, this branch
is almost entirely unstable, except on the interval 2.051 ≤ ω/ω1 ≤ 2.052. As for mode 1, the Hamiltonian
manifold will be modified when damping and forcing are introduced in the system.

5.2.2 Forced-damped vibrations

Examples of forced-damped solution are presented in Fig. 9. The cases (a) and (b) present the same damping
coefficient, χi = 0.001, and the forcing values are, respectively, f = 1.2 N, f = 2.0 N. Both forcing values
are sufficient to reach amplitudes high enough to detect the internal resonance with mode 5. For case (a), the
bifurcated branch remains almost completely unstable, as for the Hamiltonian dynamics. When the forcing is
high enough, however, stable solutions appear along the interval 2.2 ≤ ω/ω1 ≤ 2.3. As a consequence, mode
2 possesses a secondary branch of stable periodic orbits of amplitude larger than 1.5h, which was seen to be
the limit of stability for the Hamiltonian manifold. As for mode 1, it is seen that the introduction of forcing and
damping may lead to extended stable solutions on the coupled branches. Another case of interest is portrayed
in Fig. 9c. Here, the maximum forcing is f = 3.2 N, and the damping coefficient is χi = 0.01. In this case,
the damping effects are so evident that the turning point is located away from the backbone. Distortion is a
typical effect of damping: the forced response does not fit tightly along the backbone, and the turning point
moves away from it.

In turn, the analysis of the forced responses for mode 1 and 2 revealed some interesting aspects of the global
dynamics: (i) symmetry-breaking resonances are common and key to the dynamics of the dynamical response;
(ii) stable solutions on the coupled branches may reach higher amplitudes than the Hamiltonian manifold, for
particular combinations of damping and forcing factors.

6 Conclusions

The nonlinear dynamics of rectangular plates has been investigated. A robust numerical method has been
developed to obtain accurate modal solutions for a very large number of modes. In this sense, a fast converging
solution strategy has been derived for the calculation of the eigenmodes of a fully clamped plate (needed
here to solve for the Airy stress function of a plate in a nonlinear regime). Formal symmetry properties and
coupling rules have been illustrated to allow large computational and memory savings when calculating the
coupling coefficients Γ ’s. Reference values for some of these coefficients, previously unavailable in the case
of a rectangular geometry, have been presented.

Free and forced vibrations have then been taken under consideration for the first two modes. For the
first time, the NNM branches of solution (conservative case) have been drawn out to very large amplitudes,
showing the existence of internal resonance branches. An important feature, the nonexistence of periodic
solutions beyond some vibration amplitude (4h for mode 1, 1.8h for mode 2) has been found. A thorough
comparison of the Hamiltonian dynamics with the forced-damped (observable) dynamics has been derived, in
order to highlight: (i) the necessity of a preliminary analysis of the free vibrations, (ii) the main differences one
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can expect between the NNMs of the conservative systems and the observable periodic orbits of the forced-
damped system. Simple features such as the shift of the turning point from the backbone for large values of
the damping have been found. More interestingly, the importance of certain internal resonance tongues (those
with the simpler ratio) has been underlined, whereas other are mostly undetected in the forced case. Finally, it
has been found that some coupled branches may override the amplitude limit of existence of periodic solutions
predicted by the backbone curve.

Even though the results presented here involve at most 16 modes, the numerical scheme developed is
able to consider a few hundreds of them interacting together. The results shown here have been necessary to
validate the model, which will be used to undertake further study of more involved dynamical problems (i.e.
wave turbulence or sound synthesis of damped impacted plates for the reproduction of gong-like sounds).

Appendix A: Matrices for the clamped plate problem

To set up the eigenvalue problem, Eq. (25), one may proceed as follows. First, it is necessary to define the size
of the square matrices Ki j , Mi j . Suppose this size is A2 × A2 (where A is an integer). Then, the indices n1, n2
for the expansion function (22) range from 0 to A − 1. In this way, the total number of eigenvalues calculated
will be A2. Note that all the quantities that appear in the definition of the matrices are quadratic, so one needs
really four indices to define the i j entry in each matrix. Suppose these indices are (m, n) and (p, q). Then,

K (i, j) = K (mn, pq) =
Lx∫

0

X ′′
m(x)X ′′

p(x)dx

L y∫

0

Yn(y)Yq(y)dy +
Lx∫

0

Xm(x)X p(x)dx

L y∫

0

Y ′′
n (y)Y ′′

q (y)dy

+2

Lx∫

0

X ′
m(x)X ′

p(x)dx

L y∫

0

Y ′
n(y)Y ′

q(y)dy,

M(i, j) = M(mn, pq) =
Lx∫

0

Xm(x)X p(x)dx

L y∫

0

Yn(y)Yq(y)dy.

The integrals are

Lx∫

0

X ′′
m(x)X ′′

p(x)dx =
⎧
⎪⎪⎨

⎪⎪⎩

720/L3
x ; if m = p = 0

(π4m4 − 672(−1)m − 768)/(2L3
x ); if m = p 	= 0

0 if m or p = 0 and m 	= p
−24(7(−1)m + 7(−1)p + 8(−1)m(−1)p + 8)/L3

x ; otherwise,
Lx∫

0

Xm(x)X p(x)dx =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

10Lx/7; if m = p = 0
67Lx/70 − (−1)m Lx/35 − 768Lx/(π

4m4) − 672(−1)m Lx/(π
4m4); if m = p 	= 0

3Lx ((−1)p + 1)(π4 p4 − 1680))/(14π4 p4); if m = 0 and p 	= 0
3Lx ((−1)m + 1)(π4m4 − 1680))/(14π4m4); if p = 0 and m 	= 0
−(Lx (11760(−1)m + 11760(−1)p − 16π4m4 + 13440(−1)m(−1)p+
(−1)mπ4m4 + (−1)pπ4m4 − 16(−1)m(−1)pπ4m4 + 13440))/

(70π4m4) − (Lx (13440m4 + 11760(−1)mm4 + 11760(−1)pm4

+13440(−1)m(−1)pm4))/(70π4m4 p4); otherwise,
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Lx∫

0

X ′
m(x)X ′

p(x)dx =
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

120/(7Lx ); if m = p = 0
(768π2m2 − 47040(−1)m + 35π4m4 + 432(−1)mπ2m2 − 53760)/(70Lxπ

2m2); if m = p 	= 0
(60((−1)p + 1)(π2 p2 − 42))/(7Lxπ

2 p2); if m = 0 and p 	= 0
(60((−1)m + 1)(π2m2 − 42))/(7Lxπ

2m2); if p = 0 and m 	= 0
192/(35Lx )(1 + (−1)m(−1)p) − 192/(m2 p2Lxπ

2)((p2 + m2)(1 + (−1)m(−1)p))

−168/(m2 p2Lxπ
2)((p2 + m2)((−1)m + (−1)p))

+108/(35Lx )((−1)m + (−1)p); otherwise,

and similarly for the integrals involving the functions Y .
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