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Abstract: Various string vibration models exist; linear models are common in musical acoustics
but lack accuracy for complex phenomena. Nonlinear terms are necessary for pitch glides and
modal couplings at higher amplitudes. Realistic boundary conditions are vital, often overlooked
for simplicity. This study proposes an efficient time-stepping routine for nonlinear strings with
energy-storing boundaries, derived from the Scalar Auxiliary Variable method, allowing fast
inversion using the Sherman-Morisson formula.

Keywords: Numerical Methods; Hamiltonian dynamics; Geometric mechanics.

1. INTRODUCTION

String vibration simulation encompasses a variety of com-
putational methods employed to model and analyse the vi-
brational behaviour of strings; see, for instance, Chabassier
et al. (2013); Bank and Sujbert (2005); Bilbao and Duc-
ceschi (2023). Linear theory is insufficient to describe
the physical and perceptual phenomena displayed by a
vibrating string, as described by Morse and Ingard (1968);
Gough (1984); Anand (1969). Various nonlinear models
exist, and research works on the subject abound. The
simplest nonlinear string model is due to Kirchhoff (1883),
later formalised by Carrier (1945), incorporating a modu-
lated tension term which is a function of the string’s slope.
This model describes some frequency-dependent phenom-
ena, such as pitch glides, though it neglects the inherent
coupling of the transverse and longitudinal motion, and
was shown to be incorrect (Rowland (2011)). More refined
models describing such coupling include a geometrically
exact model (Chabassier and Joly (2010)), along with
various approximations such as the one due to Morse and
Ingard (1968).

Except for the Kirchhoff-Carrier model presenting an
energy-conserving, explicit update presented by Bilbao
and Smith (2005), the simulation of the distributed non-
linearity poses serious constraints concerning the choice of
appropriate time-stepping routines. On one hand, respect-
ing a form of energy conservation at the numerical level is
necessary to guarantee the overall stability of the schemes;
on the other hand, this has most often been accomplished

using implicit discretisations, see e.g. Chabassier and Joly
(2010). These, ultimately, may represent a substantial
computational bottleneck. These difficulties have been re-
cently overcome by an application of the Scalar Auxiliary
Variable (SAV) method introduced by Shen et al. (2018),
for which an explicit, energy-conserving form exists for
distributed potentials presenting a lower bound, as is the
case for all the nonlinear models mentioned previously, as
shown by Bilbao et al. (2023). Several concerns have been
raised regarding the ability of SAV schemes to converge to
the true solution of the associated differential problem,
and numerical artefacts have been reported in various
works, see e.g. Ducceschi and Bilbao (2019); Castera and
Chabassier (2023); van Walstijn et al. (2024).

In a companion paper, an assessment of the SAV schemes
for two nonlinear string potentials is carried out, high-
lighting a form of convergence in a series of benchmark
tests (Russo et al. (2024)). This paper focuses on imple-
menting a nonlinear string model comprising an energy-
storing boundary condition at the bridge. This is a first
step towards realising an impedance-like boundary con-
dition, which can be measured experimentally and fitted
using various methods in both the frequency and the time
domain, such as those illustrated by Maestre et al. (2017);
Bank and Karjalainen (2010); Ewins (2009). It will be
shown that the update matrix is a 2 × 2 block matrix
where the diagonal blocks are rank-1 perturbations of
diagonal matrices, and the off-diagonal blocks are rank-
1. The inversion of the system’s block matrix may then
be performed efficiently by applying the Sherman and



Morrison (1950) formula repeatedly, yielding an explicit
update. The article is structured as follows: Section 2
presents the continuous models of the nonlinear string
coupled to the impedance boundary; Section 3 presents
their discretisation within the SAV formalism; Section 4
presents a fast inversion formula of the update matrix and,
finally, Section 5 presents a few numerical experiments,
highlighting the ability of the current method to solve the
nonlinear models efficiently.

2. CONTINUOUS MODELS

The inherent nonlinearity in the string will be modelled
here by the simple Kirchhoff (1883) and Carrier (1945)
term. It is known that this model is physically incorrect,
as it neglects the coupling between the longitudinal and
transverse polarisations altogether, see Rowland (2011).
The model’s simple form justifies its use in this work
compared to more refined models such as the one by
Morse and Ingard (1968), permitting a few algebraic
manipulations to keep a compact notation, as will be
shown shortly. Using a more refined nonlinear potential,
one may still arrive at the results presented in the next
section; in particular, the structure of the update matrix
remains unchanged. For the sake of simplicity, losses,
stiffness and external forcing are also neglected here.

Using the same notation as in the companion paper, the
equation of motion of the sting is thus given as:

ρA∂2t u = T0∂
2
xu+ F . (1)

Here, u = u(x, t) : D := [0, L] × R+
0 → R represents the

transverse displacement of a string of unstretched length
L. It is a function of the spatial coordinate x and time
t; ∂jx and ∂jt represent the j-th partial derivative with
respect of x and t respectively, and F = F(q) is a force
density corresponding to the nonlinear contribution of the
Kirchhoff-Carrier model. Here, q := ∂xu.

In the following, the L2 inner product between functions
p, q ∈ D and related norm are defined as:

⟨p, q⟩ :=
∫ L

0

pq dx, ∥q∥ =
√
⟨q, q⟩. (2)

With this notation, the nonlinear force density for the
Kirchhoff-Carrier model is expressed as:

F = ∂x

(
EA

2L
∥q∥2q

)
, (3)

see e.g. Bilbao and Smith (2005). In the above, constants
appear as ρ, the material density of the string (assumed
constant along x); T0, the applied tension; E, Young’s
modulus; A := πr2s , the area of the cross-section, with
rs the radius of the string.

Scaling the system by ρA, using the form (3) in (1) and
applying the definition of q, the equation of motion is
written compactly as:

∂2t u = ∂x
(
c2 + γ∥q∥2

)
q. (4)

In the above, c :=
√
T0/ρA is the linear wave speed;

γ := E/2ρL > 0 is a parameter that determines the
strength of the nonlinearity. Note that, in model (4), the
nonlinear contributions are exclusively due to ∥q∥: the net
effect is an increase of the wave speed when the slope is
not identically zero.

2.1 Energy-storing boundary formulation

An energy balance for model (4) is obtained immediately
after taking an inner product of the equation with ∂tu.
Thus: 〈

∂tu, ∂
2
t u

〉
=

〈
∂tu, ∂x

(
c2 + γ∥q∥2

)
q
〉
. (5)

Integrating the right-hand side by parts, and using simple
identities, one obtains the following:

ḢD = (∂tu
(
c2 + γ∥q∥2

)
q)
∣∣L
0
, (6)

where:

HD :=
∥∂tu∥2

2
+
c2∥q∥2

2
+
γ∥q∥4

4
. (7)

The overdot notation in (6) and in the following indicates
total time differentiation. Thus, imposing Dirichlet condi-
tions (u = 0), or Neumann conditions (q = 0) at either
end, one recovers energy conservation, where the energy
HD is the sum of kinetic and potential contributions due
to the string alone, here scaled by the linear density ρA.
In this work, a realistic and nontrivial boundary term is
employed, with the boundary acting as an energy-storing
device. This can be viewed as corresponding to a particular
kind of boundary impedance without dissipation. Numer-
ous works treat the problem of impedance end conditions,
particularly in room acoustics, see e.g. Okuzono et al.
(2021); Bilbao and Hamilton (2017); Hargreaves and Cox
(2008). In all such cases, though, the problem in the
domain interior is linear, whereas equation (6) implies
a coupling of the string’s inherent nonlinearity with the
boundary term. To show this, first assume that the left
endpoint is fixed, such that u(0, t) = 0∀t. Then, define
fL :=

(
c2 + γ∥q∥2

)
q(L, t). The right endpoint is assumed

to satisfy the following:

z̈+Gz = −bfL, b⊺z = u(L, t) (8)

Here, z = z(t) : R+
0 → RN is an N × 1 vector,

describing the time evolution of the boundary energy-
storing elements; G ∈ RN×N is a positive, diagonal
matrix; b ∈ RN gives the participation factors of the
boundary elements. Note that both G and b can be
measured experimentally, by placing a sensor at the bridge
and by fitting the impulse or frequency response with
an appropriate mathematical model. They will be treated
here as input (i.e. user-selectable) parameters along with
N , the number of degrees of freedom of the boundary.
The matrix G can be thought of as collecting the squared
resonant radian frequencies of the boundary elements, i.e.
[G]i,i := ω2

i , i = 1, ..., N . The first equation in (8) is left-
multiplied by ż⊺, yielding:

ż⊺z̈+ ż⊺Gz = −∂tu(L, t)fL, (9)

where the second identity in (8) was used. Substituting this
expression in (6), and using simple identities, one gets:

ḢD + ḢB = 0, (10)

where the string’s energy HD is as in (7), and where the
boundary energy is:

HB :=
ż⊺ż

2
+

z⊺Gz

2
. (11)

Relation (10) expresses energy conservation of the string
and the boundary terms altogether.



2.2 Energy Quadratisation

In view of the numerical scheme presented below, the
equation of motion (4) and the related energy are written
in terms of the auxiliary variable ψ, as:

∂2t u = ∂x

(
c2 +

√
2γ ψ

)
q, ψ :=

√
γ

2
∥q∥2. (12)

Substituting the expression for ψ in (7), one gets:

HD :=
∥∂tu∥2

2
+
c2∥q∥2

2
+
ψ2

2
, (13)

and, thus, the energy comprises quadratic terms only. Note
that ψ is here a scalar value, not a distributed quantity.
The rate of change of ψ may itself be determined by
deriving the second equation in (12):

ψ̇ =
√
2γ ⟨q, ∂tq⟩ . (14)

This relationship, along with (12) and the related energy,
forms the core of the SAV method (Shen et al. (2018)),
allowing for a fast update of the associated numerical
scheme, as shown in Bilbao et al. (2023). Before proceed-
ing, note that the boundary force is expressed as:

fL =
(
c2 +

√
2γ ψ

)
q(L, t), (15)

and, thus, includes a contribution of the auxiliary variable.

3. DISCRETE MODELS

The spatial component of the quadratised equation of
motion is discretised first, followed by time discretisation.
Both the semi- and fully discrete systems present an
equivalent of the energy balance (10), from which stability
may be inferred.

3.1 Spatial discretisation

The displacement u(x, t) will be approximated by a grid
function um(t), with m ∈ D := [1,M ] ⊂ N. Equivalently,
the grid function will be denoted in vector notation as
u(t) ∈ RM . The grid function is defined at equally spaced
locations along D, separated by the grid spacing h, with
Mh = L. Thus, the grid function returns an approxima-
tion of the continuous displacement at the corresponding
grid point: um(t) ≈ u(mh, t). Note that, in this notation,
u0(t) is excluded since a boundary condition of Dirichlet
type is imposed at the left endpoint. The gradient q(x, t)
is itself approximated by a grid function qm− 1

2
, m ∈ D,

where the half-integer notation denotes an interleaved-
type grid function. This means that qm− 1

2
(t) ≈ q((m −

1
2 )h, t) The gradient will also be denoted in vector notation
as q(t), again of length M . The grid functions are related
as follows:

q 1
2
=
u1
h
, q 3

2
=
u2 − u1

h
, ..., qm− 1

2
=
um − um−1

h
. (16)

The auxiliary variable ψ is defined as:

ψ = h

√
γ

2
q⊺q (17)

The boundary condition at the right endpoint, approxi-
mating (8) is given as follows:

z̈+Gz = −bfL, b⊺z = uM (t), (18)

with the boundary force given as

fL =
(
c2 +

√
2γ ψ

)
qM+ 1

2
. (19)

Given these definitions, the first equation in (12) is discre-
tised as follows:

üm = h−1
(
c2 +

√
2γ ψ

)
(qm+ 1

2
− qm− 1

2
), m = 1, ...,M − 1,

üM = h−1
(
fL −

(
c2 +

√
2γ ψ

)
qM− 1

2

)
. (20)

This system cannot be implemented directly, since the
boundary force fL is given in terms of qM+ 1

2
, which

is undefined. Definitions of fL including only interior
grid points and z can, however, be obtained easily. Left-
multiplying the first equation in (18) by b⊺ one gets:

fL = −(b⊺b)−1 (z̈+Gz) . (21)

A second expression for the boundary force may be ob-
tained by substituting the second identity in (18) into (20):

fL = hb⊺z̈+
(
c2 +

√
2γ ψ

)
qM− 1

2
. (22)

The rate of change of ψ may itself be obtained from (14),
as:

ψ̇ = h
√
2γ q⊺q̇. (23)

It is convenient, at this point, to collect all the equations of
motion compactly in vector form. To that end, substitute
expression (21) in (20), and expression (22) in (18). Using
the definition of qm− 1

2
from (16), a system comprising

M +N + 1 equations is obtained as:

ü =
(
c2 +

√
2γψ

)
D2u− êM b⊺

hb⊺b
(z̈+Gz) , (24a)

(Iz + hbb⊺) z̈ = −Gz− b
(
c2 +

√
2γψ

)
qM− 1

2
, (24b)

ψ̇ = −h
√

2γ (D2u)⊺u̇. (24c)

In the above, the discrete Laplacian, a symmetric operator
of dimension M ×M , was introduced as:

D2 = h−2diag([1,−2, 1]), (25)

and furthermore:

êM := [0, 0, ..., 0, 1]⊺ (26)

is the M th Euclidian basis vector in RM .

System (24) respects an energy balance analogous to (10)
in the continuous case. Here, though, the semi-discrete
string energy is given as:

HD :=
hu̇⊺u̇

2
− c2h

2
u⊺D2u+

ψ2

2
. (27)

The energy expression for the boundary energy remains
formally unchanged so that:

HB :=
ż⊺ż

2
+

z⊺Gz

2
. (28)

Thus, the semi-discrete energy balance is:

ḢD + ḢB = 0. (29)

Note that the total energy is a quadratic form, mimicking
the expression of the continuous energy. The string energy
(27), in particular, is non-negative because the Laplace
operator D2 is negative-definite. Its eigenvalues are found
in the range:

−4h−2 ≤ λD2 < 0. (30)
This condition allows to bound the total energy from
below.



3.2 Temporal discretisation

An appropriate time discretisation will now be derived for
system (24). Many choices are available. Here, the scheme
is designed following these principles: the linear part of the
string is discretised explicitly in the domain interior. An
implicit discretisation is, however, used at the boundary:
this allows incorporating an arbitrary number of boundary
elements without affecting the stability properties of the
string’s own discretisation. Finally, the nonlinear part will
be discretised according to the SAV framework. Thus, the
grid function u(t) is approximated by a time series un,
where n is the time index. The approximation is such that
un ≈ u(nk), where k, the time step, is the multiplicative
inverse of the input sample rate. The gradient q will also
be approximated on the same discrete-time axis, so that
qn ≈ q(nk). The boundary terms z are discretised in
time following the same principle, so that zn ≈ z(nk).
The auxiliary variable will instead be evaluated on an
interleaved time axis, as ψn− 1

2 ≈ ψ((n− 1
2 )k).

Following the notation in the companion paper, time-
difference operators are given as:

δ±u
n := ±un±1 − un

k
, δ·u

n :=
1

2
(δ+ + δ−)un. (31)

The second time difference is obtained as:

δ2u
n :=

1

k
(δ+ − δ−)un. (32)

An analogous definition holds when the operator δ2 is
applied to the boundary time series zn. Difference oper-
ators acting on the interleaved time series ψ are defined
similarly; in particular:

δ+ψ
n− 1

2 :=
ψn+ 1

2 − ψn− 1
2

k
. (33)

Averaging operators will also be used. Two, in particular,
are given here as:

µ·z
n :=

zn−1 + zn+1

2
, µ+ ψn− 1

2 :=
ψn+ 1

2 + ψn− 1
2

2
. (34)

Some useful identities can be derived from the definitions
above. Three, in particular, will be used later:

δ· =
k

2
δ2 + δ−, µ· =

k2

2
δ2 + 1, µ+ =

k

2
δ+ + 1. (35)

With this in mind, a time discretisation of system (24) is
given as:

δ2u
n =

(
c2 +

√
2γµ+ψ

n− 1
2

)
D2un−

− êM b⊺

hb⊺b
(δ2z

n +Gµ·z
n) , (36a)

(Iz + hbb⊺) δ2z
n = −Gµ·z

n−

− b
(
c2 +

√
2γµ+ψ

n− 1
2

)
qnM− 1

2
, (36b)

δ+ψ
n− 1

2 = −h
√

2γ (D2u
n
)⊺δ·u

n. (36c)

The scheme is conservative. For the sake of conciseness,
a proof will be omitted, and the result is simply stated.
As for the continuous and semi-discrete cases, the energy
balance comprises a string term and a boundary term, and
is:

δ+H
n− 1

2

D + δ+H
n− 1

2

B = 0, (37)

where

H
n− 1

2

D :=
h(δ−u

n)⊺(δ−u
n)

2
− c2h

2
(un)⊺D2un−1 +

(ψn− 1
2 )2

2
,

H
n− 1

2

B :=
(δ−z

n)⊺(δ−z
n)

2
+

(zn)⊺Gzn

4
+

(zn−1)⊺Gzn−1

4
.

Note that the boundary energy H
n− 1

2

B is non-negative at all

times, and so is the nonlinear energy in H
n− 1

2

D expressed via
the square of the auxiliary function. These properties are
a direct consequence of the use of the averaging operators
µ· and µ+ applied to z and ψ in (36).

In light of this, the non-negativity of the energy overall will
be determined by the non-negativity of the linear part of

H
n− 1

2

D . This can be obtained easily using bounds (30) and
simple identities. The result is the usual CFL (Courant
et al. (1967)) condition for the linear wave equation:

ck ≤ h. (38)

Enforcing this condition allows bounding the fully discrete
energy from below, guaranteeing a form of stability.

4. A FAST INVERSION ALGORITHM

Scheme (36) appears to have an implicit form, representing
a severe computational bottleneck. However, it possesses
a useful structure for which a fast update may be derived.
The enabling idea is to perform the update by blocks,
where each block has the structure of a diagonal matrix
plus a rank-one perturbation. These matrices are clearly
invertible and possess a fast inversion formula, according
to Sherman and Morrison (1950):

(A+αβ⊺)
−1

= A−1 − A−1αβ⊺A−1

1 + β⊺A−1α
. (39)

First, it is convenient to eliminate ψn+ 1
2 from (36a) and

(36b). To that end, the third identity in (35) gives:

µ+ψ
n− 1

2 = −hk
2

√
2γ (D2u

n
)⊺δ·u

n + ψn− 1
2 . (40)

Note that the δ· can itself be recast using the first identity
in (35). Thus:

µ+ψ
n− 1

2 = −hk
2

√
2γ (D2u

n
)⊺

(
k

2
δ2 + δ−

)
un + ψn− 1

2 .

This expression is substituted in (36a) and (36b), effec-
tively eliminating the dependence of these equations on
ψn+ 1

2 . Then, the second identity in (35) is used in (36a)
and (36b), so that:

µ·z
n =

k2

2
δ2z

n + zn. (41)

Now, (36a) and (36b) can be written as:

An

[
δ2u

n

δ2z
n

]
=

[
ζn
u

ζn
z

]
. (42)

Above, the vectors ζn
u and ζn

z have known expressions,
omitted here for brevity. Furthermore, the time-dependent
matrix A is a block matrix:

A :=

[
Auu Auz

Azu Azz

]
, (43)

where the diagonal blocks are square matrices of dimen-
sion, respectively, M ×M and N × N . The off-diagonal
blocks have consistent dimensions: M × N and N ×M .



Thus, to compute the unknown accelerations, one must
invert A: [

δ2u
n

δ2z
n

]
= A−1

[
ζn
u

ζn
z

]
. (44)

It is assumed that un,un−1, zn, zn−1 are known. Hence,
once the system is inverted, one obtains:

un+1 = k2δ2u
n + 2un − un−1,

zn+1 = k2δ2z
n + 2zn − zn−1.

The auxiliary variable is then updated immediately via
(36c).

4.1 Block inversion

From linear algebra, one has:

A−1 = S−1

[
Iu −AuzA

−1
zz

−AzuA
−1
uu Iz

]
(45)

where

S =

[
Auu −AuzA

−1
zz Azu 0

0 Azz −AzuA
−1
uuAuz

]
(46)

contains the Schur complements ofAuu andAzz withinA.
This formula is convenient as it allows using the Sherman-
Morrison formula (39) repeatedly. First, note that the form
of the diagonal blocks is as follows:

Auu := Iu +
γhk2

2
ss⊺, Azz := W + hbb⊺, (47)

with s := D2un, W := Iz + k2

2 G. Hence, both blocks
are both in the form of a diagonal matrix plus a rank-one
perturbation (remember that G is itself diagonal). The
off-diagonal blocks have the form:

Auz :=
êM d⊺

hb⊺b
, Azu := −

γhk2qn
M− 1

2

2
bs⊺, (48)

where d := Wb.

In order to invert system (44), one uses (45) in (44). Hence,
one first computes:[

χn
u

χn
z

]
=

[
Iu −AuzA

−1
zz

−AzuA
−1
uu Iz

] [
ζn
u

ζn
z

]
. (49)

This can be achieved quickly by inverting Auu, Azz

using (39). Once these are computed, the accelerations are
obtained as:

δ2u
n = (Auu −AuzA

−1
zz Azu)

−1χn
u, (50a)

δ2z
n = (Azz −AzuA

−1
uuAuz)

−1χn
z . (50b)

The inversion of the Shur complements can once again
be accomplished using (39), since these are themselves in
the form of rank-1 perturbations of diagonal matrices. A
proof is now given for (50b), with a similar proof holding
for (50a). First, compute:

A−1
uuAuz =

1

hb⊺b

(
êM − γhk2sM

2 + γhk2s⊺s
s

)
d⊺, (51)

where sM := (s)M . Hence:

AzuA
−1
uuAuz = −

γk2sMqM− 1
2

b⊺b(2 + γhk2s⊺s)
bd⊺

From the above, define:

g := hb+
γk2sMqM− 1

2

b⊺b(2 + γhk2s⊺s)
d. (52)

Fig. 1. Example time and frequency domain plots of a
nonlinear string using N = 100 boundary elements.
The string is initialised in the first eigenmode of a
fixed-fixed string, with a maximum amplitude of 5
mm. The plots compare the Kirchhoff-Carrier (solid
black) and fully linear (dashed magenta) cases. The
output is recorded at xo = 0.73L.

Fig. 2. Time domain plot of the nonlinear string, for the
same string as Figure 1. The displacements of the
string at the output location and of the boundary are
given, along with the energy error.

Thus, using these in (50b) results in the following expres-
sion:

δ2z
n = (W + bg⊺)

−1
χn

z , (53)

which may again be inverted efficiently using (39).

5. NUMERICAL RESULTS

A comparison between the linear and nonlinear dynamics
is offered in Figure 1. The string is initialised, in this case,
in the first eigenmode of the corresponding fixed-fixed
string, with an amplitude of 5 mm. The increased wave
speed in the nonlinear case is visible in the time domain
plot, where the wavefronts appear to travel faster. The
same phenomenon is visible in the frequency domain plot,
where the resonance peaks in the nonlinear case are shifted
to the right, highlighting an increased vibration frequency.
Note the presence of further peaks here: these are produced
by the coupling between the boundary and the string’s
nonlinearity. An example of the energy conservation of
the scheme is given in Figure 2: note that the error is



Fig. 3. Matlab compute times of the fast algorithm (τexp)
and Matlab’s own backslash (τimp), as a function
of N , the number of boundary elements. Top: τexp
as a fraction of real-time τ0 for the nonlinear string
of Figure 1. Bottom τimp/τexp. For all simulations,
the time step is k = 1/44100 s, corresponding to
M = 133. The tests were run on an Apple M2 Pro
chip.

of the order of machine accuracy over thousands of time
steps, as per (37). Finally, the Matlab compute times of
the fast algorithm τexp are reported in Figure 3. Note
that, as expected, the compute time scale with N , the
number of boundary elements. However, the algorithm
can compute thousands of nonlinearly coupled degrees of
freedom well below real-time, highlighting the efficiency of
the proposed algorithm. A comparison against Matlab’s
own “backslash” solver is given in the same Figure. The
solver is used directly on system (44), without any optimi-
sation. Note that, as the number N of boundary elements
grows, the time ratio between the two schemes becomes
exponentially bigger, and gains of the order of three orders
of magnitude are recovered.

6. CONCLUSIONS

This article illustrated a method to treat the problem of a
nonlinear string presenting a kind of impedance boundary.
A time discretisation of the string’s own nonlinearity was
given in terms of the Scalar Auxiliary Variable method;
the boundary condition was discretised using temporal
averaging operators. The resulting scheme is characterised
by a classic CFL stability condition. The structure of the
scheme’s update matrix was thoroughly investigated, and
a fast inversion algorithm was given in terms of a repeated
application of the Sherma-Morrison inversion formula.
Matlab benchmark tests showed consistent speedups, up
to three orders of magnitude for larger systems.
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